Advertisement

AIE-active Metal-organic Coordination Complexes Based on Tetraphenylethylene Unit and Their Applications

  • Bo Jiang
  • Chang-Wei Zhang
  • Xue-Liang ShiEmail author
  • Hai-Bo Yang
Review
  • 32 Downloads

Abstract

Tetraphenylethylene (TPE) and its derivatives, as the widely used aggregation-induced emission (AIE) fluorophores, have attracted rapidly growing interest in the fields of material science and biological technology due to their unique light-emitting mechanism—they are nearly non-emissive in dilute solution but emit brilliant fluorescence in the aggregate state because of the restriction of intramolecular motion. Coordination-driven self-assembly, which provides a highly effective method to put the individual chromophores together, is consistent with the AIE mechanism of TPE. During the past few years, some AIE-active metal-organic coordination complexes have been successfully constructed via coordination-driven self-assembly, and their AIE properties and applications have been investigated. In this review, we survey the recent progress on TPE-based metal-organic coordination complexes and their applications in fluorescence sensors, cell imaging, and light-emitting materials. We will introduce them from three different types of structures: metallacycles, metallacages, and metal-organic frameworks (MOFs).

Keywords

Aggregation-induced emission Self-assembly Metal-organic coordination complexes Tetraphenylethylene Sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by STCSM (No. 16XD 1401000) and Program for Changjiang Scholars and Innovative Research Team in University.

References

  1. 1.
    Datta, S.; Saha, M. L.; Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 2018, 51, 2047–2063.CrossRefGoogle Scholar
  2. 2.
    Cook, T. R.; Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001–7045.CrossRefGoogle Scholar
  3. 3.
    Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.CrossRefGoogle Scholar
  4. 4.
    Chen, L. J.; Yang, H. B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res. 2018, 51, 2699–2710.CrossRefGoogle Scholar
  5. 5.
    Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 2017, 46, 2555–2576.CrossRefGoogle Scholar
  6. 6.
    Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693.CrossRefGoogle Scholar
  7. 7.
    Xu, L.; Wang, Y. X.; Chen, L. J.; Yang, H. B. Construction of multiferrocenyl metallacycles and metallacages via coordination- driven self-assembly: From structure to functions. Chem. Soc. Rev. 2015, 44, 2148–2167.CrossRefGoogle Scholar
  8. 8.
    Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 2005, 38, 369–378.CrossRefGoogle Scholar
  9. 9.
    Caulder, D. L.; Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 1999, 32, 975–982.CrossRefGoogle Scholar
  10. 10.
    Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc. Chem. Res. 2008, 41, 1618–1629.CrossRefGoogle Scholar
  11. 11.
    Eryazici, I.; Moorefield, C. N.; Newkome, G. R. Square-planar Pd(II), Pt(II), and Au(III) terpyridine complexes: Their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem. Rev. 2008, 108, 1834–1895.CrossRefGoogle Scholar
  12. 12.
    Nitschke, J. R. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc. Chem. Res. 2007, 40, 103–112.CrossRefGoogle Scholar
  13. 13.
    Han, Y. F.; Jin, G. X. Half-sandwich iridium- and rhodiumbased organometallic architectures: Rational design, synthesis, characterization, and applications. Acc. Chem. Res. 2014, 47, 3571–3579.CrossRefGoogle Scholar
  14. 14.
    Clever, G. H.; Punt, P. Cation-anion arrangement patterns in self-assembled Pd2L4 and Pd4L8 coordination cages. Acc. Chem. Res. 2017, 50, 2233–2243.CrossRefGoogle Scholar
  15. 15.
    Mukherjee, S.; Mukherjee, P. S. Versatility of azide in serendipitous assembly of copper(II) magnetic polyclusters. Acc. Chem. Res. 2013, 46, 2556–2566.CrossRefGoogle Scholar
  16. 16.
    Yan, X.; Li, S.; Cook, T. R.; Ji, X.; Yao, Y.; Pollock, J. B.; Shi, Y.; Yu, G.; Li, J.; Huang, F.; Stang, P. J. Hierarchical self-assembly: Well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles. J. Am. Chem. Soc. 2013, 135, 14036–14039.CrossRefGoogle Scholar
  17. 17.
    Pollock, J. B.; Schneider, G. L.; Cook, T. R.; Davies, A. S.; Stang, P. J. Tunable visible light emission of self-assembled rhomboidal metallacycles. J. Am. Chem. Soc. 2013, 135, 13676–13679.CrossRefGoogle Scholar
  18. 18.
    Yan, X.; Cook, T. R.; Pollock, J. B.; Wei, P.; Zhang, Y.; Yu, Y.; Huang, F.; Stang, P. J. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven selfassembly and host/guest interactions. J. Am. Chem. Soc. 2014, 136, 4460–4463.CrossRefGoogle Scholar
  19. 19.
    Neti, V. S. P. K.; Saha, M. L.; Yan, X.; Zhou, Z.; Stang, P. J. Coordination-driven self-assembly of fullerene-functionalized Pt(II) metallacycles. Organometallics 2015, 34, 4813–4815.CrossRefGoogle Scholar
  20. 20.
    Chen, L. J.; Zhao, G. Z.; Jiang, B.; Sun, B.; Wang, M.; Xu, L.; He, J.; Abliz, Z.; Tan, H.; Li, X.; Yang, H. B. Smart stimuli-re-sponsive spherical nanostructures constructed from supramolecular metallodendrimers via hierarchical self-assembly. J. Am. Chem. Soc. 2014, 136, 5993–6001.CrossRefGoogle Scholar
  21. 21.
    Chen, L. J.; Jiang, B.; Yang, H. B. Transformable nanostructures of cholesteryl-containing rhomboidal metallacycles through hierarchical self-assembly. Org. Chem. Front. 2016, 3, 579–587.CrossRefGoogle Scholar
  22. 22.
    Li, Z. Y.; Zhang, Y.; Zhang, C. W.; Chen, L. J.; Wang, C.; Tan, H.; Yu, Y.; Li, X.; Yang, H. B. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 2014, 136, 8577–8589.CrossRefGoogle Scholar
  23. 23.
    Jiang, B.; Zhang, J.; Ma, J.; Zheng, W.; Chen, L. J.; Sun, B.; Li, C.; Hu, B.; Tan, H.; Li, X.; Yang, H. B. Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J. Am. Chem. Soc. 2016, 138, 738–741.CrossRefGoogle Scholar
  24. 24.
    Jiang, B.; Chen, L. J.; Zhang, Y.; Tan, H.; Xu, L.; Yang, H. B. Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures. Chin. Chem. Lett. 2016, 27, 607–612.CrossRefGoogle Scholar
  25. 25.
    Jiang, B.; Zhang, J.; Zheng, W.; Chen, L. J.; Yin, G. Q.; Wang, Y. X.; Sun, B.; Li, X.; Yang, H. B. Construction of alkynylplatinum( II) bzimpy-functionalized metallacycles and their hierarchical self-assembly behavior in solution promoted by Pt···Pt and π-π interactions. Chem. Eur. J. 2016, 22, 14664–14671.CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.; Zhou, Q. F.; Huo, G.; Yin, G. Q.; Zhao, X.; Jiang, B.; Tan, H.; Li, X.; Yang, H. B. Hierarchical self-assembly of an alkynylplatinum(ll) bzimpy-functionalized metallacage via Pt···Pt and π-π Interactions. Inorg. Chem. 2018, 57, 3516–3520.CrossRefGoogle Scholar
  27. 27.
    Zhang, J.; Marega, R.; Chen, L. J.; Wu, N. W.; Xu, X. D.; Muddiman, D. C.; Bonifazi, D.; Yang, H. B. Hierarchical selfassembly of supramolecular hydrophobic metallacycles into ordered nanostructures. Chem. Asian J. 2014, 9, 2928–2936.CrossRefGoogle Scholar
  28. 28.
    Wu, N. W.; Chen, L. J.; Wang, C.; Ren, Y. Y.; Li, X.; Xu, L.; Yang, H. B. Hierarchical self-assembly of a discrete hexagonal metallacycle into the ordered nanofibers and stimuli-responsive supramolecular gels. Chem. Commun. 2014, 50, 4231–4233.CrossRefGoogle Scholar
  29. 29.
    Wang, W.; Zhang, Y.; Sun, B.; Chen, L. J.; Xu, X. D.; Wang, M.; Li, X.; Yu, Y.; Jiang, W.; Yang, H. B. The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach. Chem. Sci. 2014, 5, 4554–4560.CrossRefGoogle Scholar
  30. 30.
    Zhao, G. Z.; Chen, L. J.; Wang, W.; Zhang, J.; Yang, G.; Wang, D. X.; Yu, Y.; Yang, H. B. Stimuli-responsive supramolecular gels through hierarchical self-assembly of discrete rhomboidal metallacycles. Chem. Eur. J. 2013, 19, 10094–10100.CrossRefGoogle Scholar
  31. 31.
    Wang, X. Q.; Wang, W.; Yin, G. Q.; Wang, Y. X.; Zhang, C. W.; Shi, J.; Yu, Y.; Yang, H. B. Cross-linked supramolecular polymer metallogels constructed via a self-sorting strategy and their multiple stimulus-response behaviors. Chem. Commun. 2015, 51, 16813–16816.CrossRefGoogle Scholar
  32. 32.
    McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Stimuli-responsive metal-ligand assemblies. Chem. Rev. 2015, 115, 7729–7793.CrossRefGoogle Scholar
  33. 33.
    Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.Google Scholar
  34. 34.
    Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefGoogle Scholar
  35. 35.
    Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453.CrossRefGoogle Scholar
  36. 36.
    Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induce emission. Chem. Soc. Rev. 2011, 40, 5361–5388.CrossRefGoogle Scholar
  37. 37.
    Feng, G.; Liu, B. Aggregation-induced emission (AIE) dots: Emerging theranostic nanolights. Acc. Chem. Res. 2018, 51, 1404–1414.CrossRefGoogle Scholar
  38. 38.
    Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J. Z.; Tang, B. Z. Specific detection of D-glucose by a tetraphenylethenebased fluorescent sensor. J. Am. Chem. Soc. 2011, 133, 660–663.CrossRefGoogle Scholar
  39. 39.
    Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc. 2012, 134, 9956–9966.CrossRefGoogle Scholar
  40. 40.
    Xu, S.; Yuan, Y.; Cai, X.; Zhang, C. J.; Hu, F.; Liang, J.; Zhang, G.; Zhang, D.; Liu, B. Tuning the singlet-triplet energy gap: A unique approach to efficient photosensitizers with aggregation- induced emission (AIE) characteristics. Chem. Sci. 2015, 6, 5824–5830.CrossRefGoogle Scholar
  41. 41.
    Zhang, C. W.; Ou, B.; Jiang, S. T.; Yin, G. Q.; Chen, L. J.; Xu, L.; Li, X.; Yang, H. B. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9, 2021–2030.CrossRefGoogle Scholar
  42. 42.
    Zhang, C. W.; Jiang, S. T.; Yin, G. Q.; Li, X.; Zhao, X. L.; Yang H. B. Dual stimuli-responsive cross-linker AIE supramolecular polymer constructed through hierarchical self-assembly. Isr. J. Chem. 2018.Google Scholar
  43. 43.
    Zheng, W.; Yang, G.; Jiang, S.; Shao, N.; Yin, G. Q.; Xu, L.; Li, X.; Chen, G.; Yang, H. B. A Tetraphenylethylene (TPE)- based supra-amphiphilic organoplatinum(II) metallacycle and its self-assembly behaviour. Mater. Chem. Front. 2017, 1, 1823–1828.CrossRefGoogle Scholar
  44. 44.
    Chen, L. J.; Ren, Y. Y.; Wu, N. W.; Sun, B.; Ma, J.; Zhang, L.; Tan, H.; Liu, M.; Li, X.; Yang, H. B. Hierarchical self-assembly of discrete organoplatinum(II) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection. J. Am. Chem. Soc. 2015, 137, 11725–11735.CrossRefGoogle Scholar
  45. 45.
    Yin, G. Q.; Wang, H.; Wag, X. Q.; Song, B.; Chen, L. J.; Wang, L.; Hao, X. Q.; Yang, H. B.; Li, X. Self-assembly of emissive supramolecular rosettes with increasing complexity using multitopic terpyridine ligands. Nat. Commun. 2018, 9, 567.CrossRefGoogle Scholar
  46. 46.
    Zhang, M.; Li, S.; Yan, X.; Zhou, Z.; Saha, M. L.; Wang, Y. C.; Stang, P. J. Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging. Proc. Natl. Acad. Sci. 2016, 113, 11100–11105.CrossRefGoogle Scholar
  47. 47.
    Yan, X.; Wang, H.; Hauke, C. E.; Cook, T. R.; Wang, M.; Saha, M. L.; Zhou, Z.; Zhang, M.; Li, X.; Huang, F.; Stang, P. J. A suite of tetraphenylethylene-based discrete organoplatinum( II) metallacycles: Controllable structure and stoichiometry, aggregation-induced emission, and nitroaromatics sensing. J. Am. Chem. Soc. 2015, 137, 15276–15286.CrossRefGoogle Scholar
  48. 48.
    Yan, X.; Wang, W.; Cook, T. R.; Zhang, M.; Saha, M. L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P. J. Light-emitting superstructures with anion effect: Coordination-driven self-assembly of pure tetraphenylethylene metallacycles and metallacages. J. Am. Chem. Soc. 2016, 138, 4580–4588.CrossRefGoogle Scholar
  49. 49.
    Zhou, Z.; Yan, X.; Saha, M. L.; Zhang, M.; Wang, M.; Li, X.; Stang, P. J. Immobilizing tetraphenylethylene into fused metallacycles: Shape effects on fluorescence emission. J. Am. Chem. Soc. 2016, 138, 13131–13134.CrossRefGoogle Scholar
  50. 50.
    Tian, Y.; Yan, X.; Saha, M. L.; Niu, Z.; Stang, P. J. Hierarchical self-assembly of responsive organoplatinum(II) metallacycle- TMV complexes with turn-on fluorescence. J. Am. Chem. Soc. 2016, 138, 12033–12036.CrossRefGoogle Scholar
  51. 51.
    Yu, G.; Zhang, M.; Saha, M. L.; Mao, Z.; Chen, J.; Yao, Y.; Zhou, Z.; Liu, Y.; Gao, C.; Huang, F.; Chen, X.; Stang, P. J. Antitumor activity of a unique polymer that incorporates a fluorescent self-assembled metallacycle. J. Am. Chem. Soc. 2017, 139, 15940–15949.CrossRefGoogle Scholar
  52. 52.
    Yan, X.; Cook, T. R.; Wang, P.; Huang, F.; Stang, P. J. Highly emissive platinum(II) metallacages. Nat. Chem. 2015, 7, 342–348.CrossRefGoogle Scholar
  53. 53.
    Zhang, M.; Saha, M. L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; Stang, P. J. Multicomponent platinum(II) cages with tunable emission and amino acid sensing. J. Am. Chem. Soc. 2017, 139, 5067–5074.CrossRefGoogle Scholar
  54. 54.
    Lu, C.; Zhang, M.; Tang, D.; Yan, X.; Zhang, Z.; Zhou, Z.; Song, B.; Wang, H.; Li, X.; Yin, S.; Sepehrpour, H.; Stang, P. J. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host-guest interactions. J. Am. Chem. Soc. 2018, 140, 7674–7680.CrossRefGoogle Scholar
  55. 55.
    Sun, Y.; Yao, Y.; Wang, H.; Fu, W.; Chen, C.; Saha, M. L.; Zhang, M.; Datta, S.; Zhou, Z.; Yu, H.; Li, X.; Stang, P. J. Selfassembly of metallacages into multidimensional suprastructures with tunable emissions. J. Am. Chem. Soc. 2018, 140, 12819–12828.CrossRefGoogle Scholar
  56. 56.
    Yu, G.; Cook, T. R.; Li, Y.; Yan, X.; Wu, D.; Shao, L.; Shen, J.; Tang, G.; Huang, F.; Chen, X.; Stang, P. J. Tetraphenylethene- based highly emissive metallacage as a component of theranostic supramolecular nanoparticles. Proc. Natl. Acad. Sci. 2016, 113, 13720–13725.CrossRefGoogle Scholar
  57. 57.
    Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on in tetraphenylethylene- based metal-organic frameworks: An alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126–20129.CrossRefGoogle Scholar
  58. 58.
    Shustova, N. B.; Cozzoline, A. F.; Reineke, S.; Baldo, M.; Dinca, M. Selective turn-on ammonia sensing enabled by hightemperature fluorescence in metal-organic frameworks with open metal sites. J. Am. Chem. Soc. 2013, 135, 13326–13329.CrossRefGoogle Scholar
  59. 59.
    Shustova, N.; Cozzolino, A. F.; Dinca, M. Conformational locking by design: Relating strain energy with luminescence and stability in rigid metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 19596–19599.CrossRefGoogle Scholar
  60. 60.
    Shustova, N. B.; Ong, T.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dinca, M. Phenyl ring dynamics in a tetraphenylethylene- bridged metal-organic framework: Implications for the mechanism of aggregation induced emission. J. Am. Chem. Soc. 2012, 134, 15061–15070.CrossRefGoogle Scholar
  61. 61.
    Zhang, Q.; Su, J.; Feng, D.; Wei, Z.; Zou, X.; Zhou, H. C. Piezofluorochromic metal-organic framework: A microscissor lift. J. Am. Chem. Soc. 2015, 137, 10064–10067.CrossRefGoogle Scholar
  62. 62.
    Wei, Z.; Gu, Z. Y.; Arvapallu, R. K.; Chen, Y. P.; McDougald, Jr. R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269–8276.CrossRefGoogle Scholar
  63. 63.
    Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.CrossRefGoogle Scholar
  64. 64.
    Hu, Z.; Lustig, W. P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S. J.; Gong, Q.; Rudd, N. D.; Li, J. Effective detection of mycotoxins by a highly luminescent metal-organic framework. J. Am. Chem. Soc. 2015, 137, 16209–16215.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bo Jiang
    • 1
  • Chang-Wei Zhang
    • 1
  • Xue-Liang Shi
    • 1
    Email author
  • Hai-Bo Yang
    • 1
  1. 1.Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations