A Theoretical Study on Transitional Shear Flow Behavior of the Compressible and Isothermal Thermoplastic Polymer

  • Dong-Lei LiuEmail author
  • Feng Zhou
  • Kun Fang


By extending the virtual conformational element of the polymer chain, a dynamic end-to-end (ETE) vector was presented to describe the chain’s instantaneous morphology based on the spring-bead theory. A feasible viscoelastic model was proposed to describe the rheological behavior of the isothermal thermoplastic polymer materials, based on the molecular kinetics, thermodynamics, and continuum mechanics method. The model is simplified as the generalized Newton’s law. Its integral formula with similar form to the KBKZ model was also derived. Rheological experiments were carried out with the isotactic polypropylene material. The experimental results reveal that the viscoelastic model exhibits a three-stage rheological characteristic. There is a distinct high-elastic rheological region in the middle stage, reflecting the pseudoplastic fluids properties. Compared with the Ostwald-de Waele power law model, the viscoelastic model shows a better agreement with the rheological practices.


Shear flow Theoretical model Thermoplastic polymer Rheological experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51565034), the National Key Technology Research and Development Project of Jiangxi Province, China (No. 20151BBE50033), and the Key project of Scientific research of the Education Department of Jiangxi Province, China (No. 150009).


  1. 1.
    Wang, S. Q.; Ravindranath, S.; Wang, Y.; Boukany, P. New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network. J. Chem. Phys. 2007, 127, 064903.CrossRefGoogle Scholar
  2. 2.
    Lu, Z. L.; Pan, Y. M.; Liu, X. H.; Zheng, G. Q.; Schubert, D. W.; Liu, C. T. Molar mass and temperature dependence of rheological properties of polymethylmethacrylate melt. Mater. Lett. 2018, 221, 62–65.CrossRefGoogle Scholar
  3. 3.
    Luo, F.; Liu, X. H.; Shao C. G.; Zhang, J. X.; Shen, C. Y.; Guo, Z. H. Micromechanical analysis of molecular orientation in high-temperature creep of polycarbonate. Mater. Des. 2018, 144, 25–31.CrossRefGoogle Scholar
  4. 4.
    Liu, X. H.; Pan, Y. M.; Zheng, G. Q.; Schubert, D. W. Rheological and electrical behavior of poly(methyl methacrylate)/carbon black composites as investigated by creep recovery in shear. Compos. Sci. Technol. 2016, 128, 1–7.CrossRefGoogle Scholar
  5. 5.
    Isayev, A. I.; Shyu, G. D.; Li, C. T. Residual stresses and birefringence in injection molding of amorphous polymers: Simulation and comparison with experiment. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 622–639.CrossRefGoogle Scholar
  6. 6.
    Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 1. Brownian motion in the equilibrium state. J. Chem. Soc. Faraday Trans. 1978, 74, 1789–1801.CrossRefGoogle Scholar
  7. 7.
    Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 2. Molecular motion under flow. J. Chem. Soc. Faraday. Trans. 1978, 74, 1802–1817.CrossRefGoogle Scholar
  8. 8.
    Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 3. The constitutive equation. J. Chem. Soc. Faraday Trans. 1978, 74, 1818–1832.CrossRefGoogle Scholar
  9. 9.
    Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 4. Rheological properties. J. Chem. Soc. Faraday. Trans. 1978, 75, 38–54.CrossRefGoogle Scholar
  10. 10.
    Doi, M.; Edwards, S. F. in Theory of polymer dynamics, Oxford University Press, New York, 1986.Google Scholar
  11. 11.
    Larson, R. G. in The structure and rheology of complex fluid, Oxford University Press, New York, 1999.Google Scholar
  12. 13.
    Bird, R. B.; Wiest, J. M. Constitutive equation for polymeric liquids. Annu. Rev. Fluid Mech. 1995, 27, 169–193.CrossRefGoogle Scholar
  13. 14.
    Larson R. G. in Constitutive equation for polymer melts and solutions, Butterworks, Boston, 1988.Google Scholar
  14. 15.
    Bird, R. B.; Armstrong, R. C.; Hassager, O. in Dynamics of polymer liquids, Vol.1, Fluid Mechanics, Wiley Interscience, New York, 1987.Google Scholar
  15. 16.
    Kiriakidis, D. G.; Park, H. J.; Mitsoulis, E.; Mitsoulis, E.; Agassant, J. F. A study of stress distribution in contraction flows of and LLDPE melt. J. Non-Newtonian Fluid. Mech. 1993, 47, 339–356.CrossRefGoogle Scholar
  16. 17.
    Maders, H.; Vergnes, B.; Demay, Y.; Agassant, J. F. Steady flow of a white-metzner fluid in a 2-D abrupt contraction: Computation and experiments. J. Non-Newtonian Fluid. Mech. 1992, 45, 63–80.CrossRefGoogle Scholar
  17. 18.
    Phan-Thien, N.; Tanner, R. I. A new constitutive equation derived from network theory. J. Non-Newtonian Fluid. Mech. 1977, 2, 353–365.CrossRefGoogle Scholar
  18. 19.
    Johnson, M. W.; Segalman, D. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid. Mech. 1977, 2, 255–270.CrossRefGoogle Scholar
  19. 20.
    Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid. Mech. 1982, 11, 69–109.CrossRefGoogle Scholar
  20. 21.
    Oliveira, P. J. Alternative derivation of differential constitutive equations of the Oldroyd-B type. J. Non-Newtonian Fluid. Mech. 2009, 160, 40–46.CrossRefGoogle Scholar
  21. 22.
    Bernstein, B.; Kearsley, E. A.; Zapas, L. J. A study of stress relaxation with finite strain. J. Rheol. 1963, 7, 391–410.Google Scholar
  22. 23.
    Christainsen, R. L; Bird, R. B. Dilute solution rheology: Experimental results and finitely extensible nonlinear elastic dumbbell theory. J. Non-Newton. Fluid. Mech. 1977, 3, 161–177.CrossRefGoogle Scholar
  23. 24.
    Doi, M. A constitutive equation derived from the model of Doi and Edwards for concentrated polymer solutions and polymer melts. J. Polym. Sci., Part B: Polym. Phys. 1980, 18, 2055–2067.Google Scholar
  24. 25.
    Laso, M.; Öttinger, H. C. Calculation of viscoelastic flow using molecular models: The CONNFFESSIT approach. J. Non- Newtonian Fluid. Mech. 1993, 47, 1–20.CrossRefGoogle Scholar
  25. 26.
    Liu, D. L.; Cao, W. H.; Xin, Y.; Sun, L. Relationship model theory of polymer orientation stress-morphology for incompressible and isothermal melts in injection molding. Polym. Mater. Sci. Eng. 2014, 30, 109–118.Google Scholar
  26. 27.
    Liu, D. L.; Cao, W. H.; Xin, Y. Study on the polymer melt flow-induced orientation stress model in injection molding: With the isothermal compressible hypothesis. J. Mech. Eng. 2014, 50, 75–82.Google Scholar
  27. 28.
    Therkelsen S. V. in Constitutive modeling of active polymers, B.S. Mechanical Engineering, University of Iowa, 2002.Google Scholar
  28. 29.
    Doi, M. in Introduce of polymer physics, Clarendon Press, Oxford, 1996.Google Scholar
  29. 30.
    Reddy, J. N. in Introduction to continuum mechanics: With applications, Cambridge University Press, Cambridge, 2008.Google Scholar
  30. 31.
    Tanner, R. I. From A to (BK)Z in constitutive relations. J. Rheol. 1988, 32, 673–702.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringNanchang UniversityJiangxiChina
  2. 2.Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi ProvinceNanchang UniversityJiangxiChina

Personalised recommendations