Advertisement

Geminal Cross Coupling (GCC) Reaction for AIE Materials

  • Qi Yu
  • Ya-Long Wang
  • Ze-Qiang Chen
  • Peng-Ju Zhao
  • Cheng Fan
  • Chong LiEmail author
  • Ming-Qiang ZhuEmail author
Review
  • 12 Downloads

Abstract

Tetraphenylethylene (TPE) derivatives are typical aggregation-induced emission (AIE) molecules, which have been widely investigated and applicated. The Rathore’s procedures and McMurry reaction are the two frequently used methods for synthesizing the TPE derivatives. The complex processes and low tolerance of active function groups make the TPE with limited structures and properties in some degree. Very recently, a novel strategy, named geminal cross coupling (GCC) reaction, is developed for designing and synthesizing various topological small molecules and polymers with rich optical properties beyond simple TPE compounds, and becomes a powerful synthesis method to AIE materials. This review overviews the current progresses of AIE molecules and polymers prepared by GCC as well as their applications. We believe that GCC reaction will have a bright future in the development of the next generation of tetraarylethylene (TAE)-kind AIE materials.

Keywords

GCC reaction AIE Tetraarylethylene Conjugated polymer Imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Basic Research Program (973) of China (Nos. 2015CB755602 and 2013CB922 104), the National Natural Science Foundation of China (Nos. 51673077, 21474034, and 51603078), the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS029 and HUST: 2018KFYXKJC033), and the Nature Science Foundation of Hubei Province (No. 2018CFB574). We also thank the Analytical and Testing Center of Huazhong University of Science and Technology, the Center of Micro-Fabrication and Characterization (CMFC) and the Center for Nanoscale Characterization & Devices (CNCD) of WNLO for use of their facilities.

References

  1. 1.
    Luo J.; Xie Z.; Lam J. W. Y.; Cheng L.; Chen H.; Qiu C.; Kwok H. S.; Zhan X.; Liu Y.; Zhu D.; Tang B. Z. Aggregation- induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.Google Scholar
  2. 2.
    An B. K.; Kwon S. K.; Jung S. D.; Park S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 2002, 124, 14410–14415.CrossRefGoogle Scholar
  3. 3.
    Tang B. Z.; Zhan X.; Yu G.; Sze Lee P. P.; Liu Y.; Zhu D. Efficient blue emission from siloles. J. Mater. Chem. 2001, 11, 2974–2978.CrossRefGoogle Scholar
  4. 4.
    Li Z.; Dong Y.; Mi B.; Tang Y.; Häussler M.; Tong H.; Dong Y.; Lam J. W. Y.; Ren Y.; Sung H. H. Y.; Wong K. S.; Gao P.; Williams I. D.; Kwok H. S.; Tang B. Z. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials. J. Phys. Chem. B 2005, 109, 10061–10066.CrossRefGoogle Scholar
  5. 5.
    Zhao Z.; Chen S.; Lam J. W. Y.; Jim C. K. W.; Chan C. Y. K.; Wang Z.; Lu P.; Deng C.; Kwok H. S.; Ma Y.; Tang B. Z. Steric hindrance, electronic communication, and energy transfer in the photo- and electroluminescence processes of aggregation- induced emission luminogens. J. Phys. Chem. C 2010, 114, 7963–7972.CrossRefGoogle Scholar
  6. 6.
    Liu Y.; Chen S.; Lam J. W. Y.; Lu P.; Kwok R. T. K.; Mahtab F.; Kwok H. S.; Tang B. Z. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem. Mater. 2011, 23, 2536–2544.CrossRefGoogle Scholar
  7. 7.
    Liu Y.; Deng C.; Tang L.; Qin A.; Hu R.; Sun J. Z.; Tang B. Z. Specific detection of D-glucose by a tetraphenylethenebased fluorescent sensor. J. Am. Chem. Soc. 2011, 133, 660–663.CrossRefGoogle Scholar
  8. 8.
    Liu J.; Zhong Y.; Lam J. W. Y.; Lu P.; Hong Y.; Yu Y.; Yue Y.; Faisal M.; Sung H. H. Y.; Williams I. D.; Wong K. S.; Tang B. Z. Hyperbranched conjugated polysiloles: Synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules 2010, 43, 4921–4936.CrossRefGoogle Scholar
  9. 9.
    Chen S.; Liu J.; Liu Y.; Su H.; Hong Y.; Jim C. K. W.; Kwok R. T. K.; Zhao N.; Qin W.; Lam J. W. Y.; Wong K. S.; Tang B. Z. An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: Extending the pH sensing range by “switch + knob” effect. Chem. Sci. 2012, 3, 1804–1809.CrossRefGoogle Scholar
  10. 10.
    Peng L.; Zhang G.; Zhang D.; Xiang J.; Zhao R.; Wang Y.; Zhu D. Fluorescence “turn-on” ensemble for acetylcholinesterase activity assay and inhibitor screening. Org. Lett. 2009, 11, 4014–4017.CrossRefGoogle Scholar
  11. 11.
    Hong Y.; Meng L.; Chen S.; Leung C. W. T.; Da L. T.; Faisal M.; Silva D. A.; Liu J.; Lam J. W. Y.; Huang X.; Tang B. Z. Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 1680–1689.CrossRefGoogle Scholar
  12. 12.
    Shi H.; Liu J.; Geng J.; Tang B. Z.; Liu B. Specific detection of integrin αvβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 9569–9572.CrossRefGoogle Scholar
  13. 13.
    Shi H.; Kwok R. T. K.; Liu J.; Xing B.; Tang B. Z.; Liu B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 17972–17981.CrossRefGoogle Scholar
  14. 14.
    Yuan Y.; Kwok R. T. K.; Tang B. Z.; Liu B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc. 2014, 136, 2546–2554.CrossRefGoogle Scholar
  15. 15.
    Dong Y.; Xu B.; Zhang J.; Tan X.; Wang L.; Chen J.; Lv H.; Wen S.; Li B.; Ye L.; Zou B.; Tian W. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew. Chem. Int. Ed. 2012, 51, 10782–10785.CrossRefGoogle Scholar
  16. 16.
    An B.-K.; Gierschner J.; Park S. Y. π-Conjugated cyanostilbene derivatives: A unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc. Chem. Res. 2012, 45, 544–554.CrossRefGoogle Scholar
  17. 17.
    Ding D.; Li K.; Liu B.; Tang B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453.CrossRefGoogle Scholar
  18. 18.
    Banerjee M. Practical synthesis of unsymmetrical tetraarylethylenes and their application for the preparation of [triphenylethylene-spacer-triphenylethylene] triads. J. Org. Chem. 2007, 72, 8054–8061.CrossRefGoogle Scholar
  19. 19.
    McMurry J. E.; Krepski L. R. Synthesis of unsymmetrical olefins by titanium(0) induced mixed carbonyl coupling. Some comments on the mechanism of the pinacol reaction. J. Org. Chem. 1976, 41, 3929–3930.Google Scholar
  20. 20.
    McMurry J. E. Titanium-induced dicarbonyl-coupling reactions. Acc. Chem. Res. 1983, 16, 405–411.CrossRefGoogle Scholar
  21. 21.
    Duan X. F.; Zeng J.; Lü J. W.; Zhang Z. B. Insights into the general and efficient cross McMurry reactions between ketones. J. Org. Chem. 2006, 71, 9873–9876.CrossRefGoogle Scholar
  22. 22.
    Zhang G.-F.; Wang H.; Aldred M. P.; Chen T.; Chen Z. Q.; Meng X.; Zhu M. Q. General synthetic approach toward geminal-substituted tetraarylethene fluorophores with tunable emission properties: X-ray crystallography, aggregation-induced emission and piezofluorochromism. Chem. Mater. 2014, 26, 4433–4446.CrossRefGoogle Scholar
  23. 23.
    Corey E. J. and Fuchs P. L. A synthetic method for formyl → ethynyl conversion (RCHO → RC≡CH or RC≡CR'). Tetrahedron Lett. 1972, 36, 3769–3772.Google Scholar
  24. 24.
    Mei J.; Hong Y.; Lam J. W. Y.; Qin A.; Tang Y.; Tang B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479.CrossRefGoogle Scholar
  25. 25.
    Hong Y.; Lam J. W. Y.; Tang B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.Google Scholar
  26. 26.
    Hong Y.; Lam J. W. Y.; Tang B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.CrossRefGoogle Scholar
  27. 27.
    Hu R.; Leung N. L. C.; Tang B. Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562.CrossRefGoogle Scholar
  28. 28.
    Wang M.; Zhang G.; Zhang D.; Zhu D.; Tang B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 2010, 20, 1858–1867.CrossRefGoogle Scholar
  29. 29.
    Wang J.; Mei J.; Hu R.; Sun J. Z.; Qin A.; Tang B. Z. Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc. 2012, 134, 9956–9966.CrossRefGoogle Scholar
  30. 30.
    Shi J.; Zhao W.; Li C.; Liu Z.; Bo Z.; Dong Y.; Dong Y.; Tang B. Z. Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Chinese Sci. Bull. 2013, 58, 2723–2727.CrossRefGoogle Scholar
  31. 31.
    Zhang G. F.; Chen Z. Q.; Aldred M. P.; Hu Z.; Chen T.; Huang Z.; Meng X.; Zhu M. Q. Direct validation of the restriction of intramolecular rotation hypothesis via the synthesis of novel ortho-methyl substituted tetraphenylethenes and their application in cell imaging. Chem. Commun. 2014, 50, 12058–12060.CrossRefGoogle Scholar
  32. 32.
    Zhang G. F.; Aldred M. P.; Chen Z. Q.; Chen T.; Meng X.; Zhu M. Q. Efficient green-red piezofluorochromism of bisanthracene- modified dibenzofulvene. RSC Adv. 2015, 5, 1079–1082.CrossRefGoogle Scholar
  33. 33.
    Gabr M. T.; Pigge F. C. Synthesis and aggregation-induced emission properties of pyridine and pyridinium analogues of tetraphenylethylene. RSC Adv. 2015, 5, 90226–90234.CrossRefGoogle Scholar
  34. 34.
    Gabr M. T.; Pigge F. C. A selective fluorescent sensor for Zn2+ based on aggregation-induced emission (AIE) activity and metal chelating ability of bis(2-pyridyl)diphenylethylene. Dalton Trans. 2016, 45, 14039–14043.CrossRefGoogle Scholar
  35. 35.
    Reedy J. L.; Hedlund D. K.; Gabr M. T.; Henning G. M.; Pigge F. C.; Schultz M. K. Synthesis and evaluation of tetraarylethylene-based mono-, bis-, and tris(pyridinium) derivatives for image-guided mitochondria-specific targeting and cytotoxicity of metastatic melanoma cells. Bioconjugate Chem. 2016, 27, 2424–2430.CrossRefGoogle Scholar
  36. 36.
    Liu J. Z.; Lam J. W. Y.; Tang B. Z. Acetylenic polymers: Syntheses, structures, and functions. Chem. Rev. 2009, 109, 5799–5867.CrossRefGoogle Scholar
  37. 37.
    Heeger A. J. Semiconducting polymers: The third generation. Chem. Soc. Rev. 2010, 39, 2354–2371.CrossRefGoogle Scholar
  38. 38.
    Grimsdale A. C.; Chan K. L.; Martin R. E.; Jokisz P. G.; Holmes A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109, 897–1091.CrossRefGoogle Scholar
  39. 39.
    Feng X.; Liu L.; Wang S.; Zhu D. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010, 39, 2411–2419.CrossRefGoogle Scholar
  40. 40.
    Zhang K.; Hu Z.; Sun C.; Wu Z.; Huang F.; Cao Y. Toward solution-processed high-performance polymer solar cells: From material design to device engineering. Chem. Mater. 2016, 29, 141–148.CrossRefGoogle Scholar
  41. 41.
    Alvarez A.; Costa-Fernández J. M.; Pereiro R.; Sanz-Medel A.; Salinas-Castillo A. Fluorescent conjugated polymers for chemical and biochemical sensing. TrAC, Trends Anal. Chem. 2011, 30, 1513–1525.CrossRefGoogle Scholar
  42. 42.
    Chen M.; Shang J.; Wang Y.; Wu K.; Kuttner J.; Hilt G.; Hieringer W.; Gottfried J. M. On-surface synthesis and characterization of honeycombene oligophenylene macrocycles. ACS Nano 2017, 11, 134–143.CrossRefGoogle Scholar
  43. 43.
    Xu Y.; Jin S.; Xu H.; Nagai A.; Jiang D. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031.CrossRefGoogle Scholar
  44. 44.
    Wu C. F.; Szymanski C.; McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 2006, 22, 2956–2960.CrossRefGoogle Scholar
  45. 45.
    Padmanaban G.; Ramakrishnan S. Fluorescence spectroscopic studies of solvent- and temperature-induced conformational transition in segmented poly[2-methoxy-5-(2'-ethylhexyl)oxy- 1,4-phenylenevinylene] (MEHPPV). J. Phys. Chem. B 2004, 108, 14933–14941.CrossRefGoogle Scholar
  46. 46.
    Pecher J.; Mecking S. Nanoparticles of conjugated polymers. Chem. Rev. 2010, 110, 6260–6279.CrossRefGoogle Scholar
  47. 47.
    Pescitelli G.; Omar O. H.; Operamolla A.; Farinola G. M.; Di Bari L. Chiroptical properties of glucose-substituted poly(pphenylene- ethynylene)s in solution and aggregate state. Macromolecules 2012, 45, 9626–9630.CrossRefGoogle Scholar
  48. 48.
    Tan C. Y.; Pinto M. R.; Schanze K. S. Photophysics, aggregation and amplified quenching of a water-soluble poly(phenylene ethynylene). Chem. Commun. 2002, 446–447.Google Scholar
  49. 49.
    Mei J.; Leung N. L.; Kwok R. T.; Lam J. W.; Tang B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.Google Scholar
  50. 50.
    Feng H. T.; Yuan Y. X.; Xiong J. B.; Zheng Y. S.; Tang B. Z.. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452–7476.CrossRefGoogle Scholar
  51. 51.
    Chen Z. Q.; Chen T.; Liu J. X.; Zhang G. F.; Li C.; Gong W. L.; Xiong Z. J.; Xie N. H.; Tang B. Z.; Zhu M. Q. Geminal cross-coupling of 1,1-dibromoolefins facilitating multiple topological π-conjugated tetraarylethenes. Macromolecules 2015, 48, 7823–7835.CrossRefGoogle Scholar
  52. 52.
    Chen T.; Yin H.; Chen Z. Q.; Zhang G. F.; Xie N. H.; Li C.; Gong W. L.; Tang B. Z.; Zhu M. Q. Monodisperse AIE-active conjugated polymer nanoparticles via dispersion polymerization using geminal cross-coupling of 1,1-dibromoolefins. Small 2016, 12, 6547–6552.CrossRefGoogle Scholar
  53. 53.
    Zhou Q. Y.; Xin B.; Wang Y. L.; Li C.; Chen Z. Q.; Yu Q.; Huang Z. L.; Zhu M. Q. Geminal cross-coupling synthesis, ion-induced emission and lysosome imaging of cationic tetraarylethene oligoelectrolytes. Chem. Commun. 2018, 54, 3617–3620.CrossRefGoogle Scholar
  54. 54.
    Iyoda M.; Yamakawa J.; Rahman M. J. Conjugated macrocycles: Concepts and applications. Angew. Chem. Int. Ed. 2011, 50, 10522–10553.CrossRefGoogle Scholar
  55. 55.
    Zhang W.; Moore J. S. Shape-persistent macrocycles: Structures and synthetic approaches from arylene and ethynylene building blocks. Angew. Chem. Int. Ed. 2006, 45, 4416–4439.CrossRefGoogle Scholar
  56. 56.
    Luo J.; Yan Q.; Zhou Y.; Li T.; Zhu N.; Bai C.; Cao Y.; Wang J.; Pei J.; Zhao D. A photoswitch based on self-assembled single microwire of a phenyleneethynylene macrocycle. Chem. Commun. 2010, 46, 5725–5727.Google Scholar
  57. 57.
    Reuter R.; Wegner H. A. Switchable 3D networks by light controlled π-stacking of azobenzene macrocycles. Chem. Commun. 2013, 49, 146–148.CrossRefGoogle Scholar
  58. 58.
    Astruc D.; Boisselier E.; Ornelas C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857–1959.CrossRefGoogle Scholar
  59. 59.
    Li W. S.; Aida T. Dendrimer porphyrins and phthalocyanines. Chem. Rev. 2009, 109, 6047–6076.CrossRefGoogle Scholar
  60. 60.
    Grayson S. M.; Frechet J. M. J. Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev. 2001, 101, 3819–3867.CrossRefGoogle Scholar
  61. 61.
    Bosman A. W.; Janssen H. M.; Meijer E. W. About dendrimers: Structure, physical properties, and applications. Chem. Rev. 1999, 99, 1665–1688.CrossRefGoogle Scholar
  62. 62.
    Baier M. C.; Huber J.; Mecking S. Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J. Am. Chem. Soc. 2009, 131, 14267–14273.CrossRefGoogle Scholar
  63. 63.
    Fischer C. S.; Baier M. C.; Mecking S. Enhanced brightness emission-tuned nanoparticles from heterodifunctional polyfluorene building blocks. J. Am. Chem. Soc. 2013, 135, 1148–54.CrossRefGoogle Scholar
  64. 64.
    Muenmart D.; Foster A. B.; Harvey A.; Chen M. T.; Navarro O.; Promarak V.; McCairn M. C.; Behrendt J. M.; Turner M. L. Conjugated polymer nanoparticles by suzuki-miyaura cross-coupling reactions in an emulsion at room temperature. Macromolecules 2014, 47, 6531–6539.CrossRefGoogle Scholar
  65. 65.
    Wu X.; Li H.; Xu B.; Tong H.; Wang L. Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity. Polym. Chem. 2014, 5, 4521–4525.CrossRefGoogle Scholar
  66. 66.
    Chen Y.; Bai Y.; Han Z.; He W.; Guo Z. Photoluminescence imaging of Zn2+ in living systems. Chem. Soc. Rev. 2015, 44, 4517–4546.CrossRefGoogle Scholar
  67. 67.
    Salinas Y.; Martinez-Manez R.; Marcos M. D.; Sancenon F.; Costero A. M.; Parra M.; Gil S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261–1296.CrossRefGoogle Scholar
  68. 68.
    Yuan W. Z.; Hu R.; Lam J. W. Y.; Xie N.; Jim C. K. W.; Tang B. Z. Conjugated hyperbranched poly(aryleneethynylene) s: Synthesis, photophysical properties, superquenching by explosive, photopatternability, and tunable high refractive indices. Chem. Eur. J. 2012, 18, 2847–2856.CrossRefGoogle Scholar
  69. 69.
    Sanchez J. C.; DiPasquale A. G.; Rheingold A. L.; Trogler W. C. Synthesis, luminescence properties and explosives sensing with 1,1-tetraphenylsilole- and 1,1-silafluorene-vinylene polymers. Chem. Mater. 2007, 19, 6459–6470.CrossRefGoogle Scholar
  70. 70.
    Zhang J.; Liu Z.; Lian P.; Qian J.; Li X.; Wang L.; Fu W.; Chen L.; Wei X.; Li C. Selective imaging and cancer cell death via pH switchable near-infrared fluorescence and photothermal effects. Chem. Sci. 2016, 7, 5995–6005.CrossRefGoogle Scholar
  71. 71.
    Cai Y.; Gui C.; Samedov K.; Su H.; Gu X.; Li S.; Luo W.; Sung H. H. Y.; Lam J. W. Y.; Kwok R. T. K.; Williams I. D.; Qin A.; Tang B. Z. An acidic pH independent piperazine-TPE AIEgen as a unique bioprobe for lysosome tracing. Chem. Sci. 2017, 8, 7593–7603.CrossRefGoogle Scholar
  72. 72.
    Wang H.; Fang B.; Xiao L.; Li D.; Zhou L.; Kong L.; Yu Y.; Li X.; Wu Y.; Hu Z. A water-soluble "turn-on" fluorescent probe for specifically imaging mitochondria viscosity in living cells. Spectrochim. Acta, Part A 2018, 203, 127–131.CrossRefGoogle Scholar
  73. 73.
    Lee S. C.; Heo J.; Woo H. C.; Lee J. A.; Seo Y. H.; Lee C. L.; Kim S.; Kwon O. P. Fluorescent molecular rotors for viscosity sensors. Chem. Eur. J. 2018, 24, 13706–13718.CrossRefGoogle Scholar
  74. 74.
    Luo Z. J.; Liu B.; Zhu K. N.; Huang Y. Y.; Pan C. J.; Wang B. F.; Wang L. An environment-sensitive fluorescent probe for quantification of human serum albumin: Design, sensing mechanism, and its application in clinical diagnosis of hypoalbuminemia. Dyes Pigments 2018, 152, 60–66.CrossRefGoogle Scholar
  75. 75.
    Gong W. L.; Yan J.; Zhao L. X.; Li C.; Huang Z. L.; Tang B. Z.; Zhu M. Q. Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP. Photochem. Photobiol. Sci. 2016, 15, 1433–1441.CrossRefGoogle Scholar
  76. 76.
    Liu J. X.; Xin B.; Li C.; Xie N. H.; Gong W. L.; Huang Z. L.; Zhu M. Q. PEGylated perylenemonoimide-dithienylethene for super-resolution imaging of liposomes. ACS Appl. Mater. Interfaces 2017, 9, 10338–10343.Google Scholar
  77. 77.
    Yan J.; Zhao L. X.; Li C.; Hu Z.; Zhang G. F.; Chen Z. Q.; Chen T.; Huang Z. L.; Zhu J.; Zhu M. Q. Optical nanoimaging for block copolymer self-assembly. J. Am. Chem. Soc. 2015, 137, 2436–2439.CrossRefGoogle Scholar
  78. 78.
    Zhou Q. Y.; Fan C.; Li C.; Wang Y. L.; Chen Z. Q.; Yu Q.; Zhu M. Q. AIE-based universal super-resolution imaging for inorganic and organic nanostructures. Mater. Horiz. 2018, 5, 474–479.Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations