Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole

  • Xue-Min Dai
  • Hong Gao
  • Ran Zhang
  • Zhi-Jun Du
  • Tong-Fei Shi
  • Xiang-Ling Ji
  • Xue-Peng QiuEmail author
  • Yong-Feng MenEmail author


A series of polyamic acid copolymers (co-PAAs) with para-hydroxyl groups was synthesized using two diamine monomers, namely p-phenylenediamine (p-PDA) and 5-amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole (m-pHBOA), of different molar ratios through copolymerization with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) in N,N-dimethyacetamine (DMAc). The co-PAA solutions were used to fabricate fibers by dry-jet wet spinning, and thermal imidization was conducted to obtain polyimide copolymer (co-PI) fibers. The effects of the m-pHBOA moiety on molecular packing and physical properties of the prepared fibers were investigated. Fourier transform infrared (FTIR) spectroscopic results confirmed that intra/intermolecular hydrogen bonds originated from the hydroxyl group and the nitrogen atom of the benzoxazole group and/or the hydroxyl group and the oxygen atom of the carbonyl group of cyclic imide. As-prepared PI fibers displayed homogenous and smooth surface and uniform diameter. The glass transition temperatures (Tgs) of PI fibers were within 311−337 °C. The polyimide fibers showed 5% weight loss temperature (T5%) at above 510 °C in air. Two-dimensional wide-angle X-ray diffraction (WXRD) patterns indicated that the homo-PI and co-PI fibers presented regularly arranged polymer chains along the fiber axial direction. The ordered molecular packing along the transversal direction was destroyed by introducing the m-pHBOA moiety. Moreover, the crystallinity and orientation factors increased with increasing draw ratio. Small-angle X-ray scattering (SAXS) results showed that it is beneficial to reduce defects in the fibers by increasing the draw ratio. The resultant PI fibers exhibited excellent mechanical properties with fracture strength and initial modulus of 2.48 and 89.73 GPa, respectively, when the molar ratio of p-PDA/m-pHBOA was 5/5 and the draw ratio was 3.0.


Polyimide fiber Phenylenebenzoxazole Hydroxyl group Hydrogen bonding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key R&D Program of China (No. 2017YFB0308300) and the National Basic Research Program of China (No. 2014CB643603).

Supplementary material

10118_2019_2205_MOESM1_ESM.pdf (614 kb)
Preparation and Properties of High-Performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole


  1. 1.
    Li, F.; Huang, L.; Shi, Y.; Jin, X.; Wu, Z.; Shen, Z.; Chuang, K.; Lyon, R. E.; Harris, F. W.; Cheng S. Z. D. Thermal degradation mechanism and thermal mechanical properties of two high-performance aromatic polyimide fibers. J. Macromol. Sci. Part B: Phys. 2016, 38, 107–122.CrossRefGoogle Scholar
  2. 2.
    Zhao, Y.; Dong, Z.; Li, G.; Dai, X.; Liu, F.; Ma, X.; Qiu, X. Atomic oxygen resistance of polyimide fibers with phosphorus-containing side chains. RSC Adv. 2017, 7, 5437–5444.CrossRefGoogle Scholar
  3. 3.
    Dong, J.; Yang, C.; Cheng, Y.; Wu, T.; Zhao, X.; Zhang, Q. Facile method for fabricating low dielectric constant polyimide fibers with hyperbranched polysiloxane. J. Mater. Chem. C 2017, 5, 2818–2825.CrossRefGoogle Scholar
  4. 4.
    Zhao, Y.; Feng, T.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X. Synthesis and properties of novel polyimide fibers containing phosphorus groups in the main chain. RSC Adv. 2016, 6, 42482–42494.CrossRefGoogle Scholar
  5. 5.
    Penn, L.; Larsen, F. Physicochemical properties of Kevlar-49 fiber. J. Appl. Polym. Sci. 1979, 23, 59–73.CrossRefGoogle Scholar
  6. 6.
    Yang, H. in Kevlar ara id fiber, Wiley, 1993.Google Scholar
  7. 7.
    Choe, E. W.; Kim, S. N. Synthesie, spining and fiber mechanical properties of poly(p-phenylenebenzobisoxazole). Macromolecules 1981, 14, 920–924.CrossRefGoogle Scholar
  8. 8.
    Sikkema, D. J. Design, synthesis and properties of a novel rigid rod polymer, PIPD or ‘M5’: High modulus and tenacity fibres with substantial compressive strength. Polymer 1998, 39, 5981–5986.CrossRefGoogle Scholar
  9. 9.
    Afshari, M.; Sikkema, D. J.; Lee, K.; Bogle, M. High performance fibers based on rigid and flexible polymers. Polym. Rev. 2008, 48, 230–274.CrossRefGoogle Scholar
  10. 10.
    Eashoo, M.; Wu, Z.; Zhang, A.; Shen, D.; Tse, C.; Harris, F. W.; Cheng, S. Z. D.; Gardner, K. H.; Hsiao, B. S. High performance aromatic polyimide fibers, 3. A polyimide synthesized from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride and 2, 2′-dimethyl-4, 4′-diaminobiphenyl. Macromol. Chem. Phys. 1994, 195, 2207–2225.Google Scholar
  11. 11.
    Cheng, S. Z. D.; Wu, Z.; Mark, E. A high-performance aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence. Polymer 1991, 32, 1803–1810.Google Scholar
  12. 12.
    Dong, J.; Yin, C.; Luo, W.; Zhang, Q. Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers. J. Mater. Sci. 2013, 48, 7594–7602.CrossRefGoogle Scholar
  13. 13.
    Park, S. K.; Farris, R. J. Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization. Polymer 2001, 42, 10087–10093.CrossRefGoogle Scholar
  14. 14.
    Dorogy, W. E.; St Clair, A. K. Wet spinning of solid polyamic acid fibers. J. Appl. Polym. Sci. 1991, 43, 501–519.CrossRefGoogle Scholar
  15. 15.
    Zhang, E.; Dai, X.; Dong, Z.; Qiu, X.; Ji, X. Critical concentration and scaling exponents of one soluble polyimide from dilute to semidilute entangled solutions. Polymer 2016, 84, 275–285.CrossRefGoogle Scholar
  16. 16.
    Xiang, H.; Huang, Z.; Liu, L.; Chen, L.; Zhu, J.; Hu, Z.; Yu, J. Structure and properties of polyimide (BTDA-TDI/MDI copolyimide) fibers obtained by wet-spinning. Macromol. Res. 2011, 19, 645–653.CrossRefGoogle Scholar
  17. 17.
    Yang, W.; Liu, F.; Zhang, J.; Zhang, E.; Qiu, X.; Ji, X. Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber. Eur. Polym. J. 2017, 96, 429–442.CrossRefGoogle Scholar
  18. 18.
    Yin, C.; Dong, J.; Tan, W.; Lin, J.; Chen, D.; Zhang, Q. Straininduced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety. Polymer 2015, 75, 178–186.CrossRefGoogle Scholar
  19. 19.
    Dong, J.; Yin, C.; Lin, J.; Zhang, D.; Zhang, Q. Evolution of the microstructure and morphology of polyimide fibers during heat-drawing process. RSC Adv. 2014, 4, 44666–44673.CrossRefGoogle Scholar
  20. 20.
    Yang, W.; Liu, F.; Zhang, E.; Qiu, X.; Ji, X. Influence of atmosphere and force during thermal imidization on the structure and properties of BPDA-PDA polyimide fibers. Chem. J. Chinese U-Chinese 2017, 38, 150–158.Google Scholar
  21. 21.
    Yan, X.; Zhang, M.; Qi, S.; Tian, G.; Niu, H.; Wu, D. A highperformance aromatic co-polyimide fiber: Structure and property relationship during gradient thermal annealing. J. Mater. Sci. 2018, 53, 2193–2207.CrossRefGoogle Scholar
  22. 22.
    Yang, W.; Liu, F.; Li, G.; Zhang, E.; Xue, Y.; Dong, Z.; Qiu, X.; Ji, X. Comparison of different methods for determining the imidization degree of polyimide fibers. Chinese J. Polym. Sci. 2016, 34, 209–220.CrossRefGoogle Scholar
  23. 23.
    Sukhanova, T.; Baklagina, Y. G.; Kudryavtsev, V.; Maricheva, T.; Lednicky, F. Morphology, deformation and failure behaviour of homo-and copolyimide fibres: 1. Fibres from 4, 4′-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2, 5-bis(4-aminophenyl)-pyrimidine (2, 5PRM). Polymer 1999, 40, 6265–6276.Google Scholar
  24. 24.
    Chen, X.; Li, Z.; Liu, F.; Sun, Q.; Li, J. Synthesis and properties of poly(imide-benzoxazole) fibers from 4, 4′-oxydiphthalic dianhydride in polyphosphoric acid. Eur. Polym. J. 2015, 64, 108–117.CrossRefGoogle Scholar
  25. 25.
    Yin, C.; Dong, J.; Zhang, D.; Lin, J.; Zhang, Q. Enhanced mechanical and hydrophobic properties of polyimide fibers containing benzimidazole and benzoxazole units. Eur. Polym. J. 2015, 67, 88–98.CrossRefGoogle Scholar
  26. 26.
    Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q. Synthesis of poly(benzobisoxazole-co-imide) and fabrication of high-performance fibers. Polymer 2017, 133, 50–59.CrossRefGoogle Scholar
  27. 27.
    Gan, F.; Dong, J.; Zhang, D.; Tan, W.; Zhao, X.; Zhang, Q. High-performance polyimide fibers derived from wholly rigidrod monomers. J. Mater. Sci. 2018, 53, 5477–5489.CrossRefGoogle Scholar
  28. 28.
    Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. High-performance copolyimide fibers containing quinazolinone moiety: Preparation, structure and properties. Polymer 2013, 54, 1700–1708.CrossRefGoogle Scholar
  29. 29.
    Borjigin, H.; Liu, Q.; Zhang, W.; Gaines, K.; Riffle, J. S.; Paul, D. R.; Freeman, B. D.; McGrath, J. E. Synthesis and characterization of thermally rearranged (TR) polybenzoxazoles: Influence of isometic structure on gas transport properties. Polymer 2015, 75, 199–210.CrossRefGoogle Scholar
  30. 30.
    Hodgkin, J. H.; Liu, M. S.; Dao, B. N.; Mardel, J.; Hill, A. J. Reaction mechanism and products of the thermal conversion of hydroxy-containing polyimides. Eur. Polym. J. 2011, 47, 394–400.CrossRefGoogle Scholar
  31. 31.
    Han, S. H., Lee, J. E.; Lee, K. J.; Park, H. B.; Lee, Y. M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 2010, 357, 143–151.CrossRefGoogle Scholar
  32. 32.
    Dai, X.; Bao, F.; Jiao, L.; Yao, H.; Ji, X.; Qiu, X.; Men, Y. High-performance polyimide copolymer fibers derived from 5-amino-2-(2-hydroxy-4-aminobenzene)-benzoxazole: Preparation, structure and properties. Polymer 2018, 150, 254–266.CrossRefGoogle Scholar
  33. 33.
    Preston, J.; Dewinter, W.; Hofferbert, W. Heterocyclic intermediates for the preparation of thermally stable polymers. II. Benzoxazoles and benzothiazoles. J. Heterocycl. Chem. 1968, 5, 269–273.CrossRefGoogle Scholar
  34. 34.
    Klug, H. P.; Alexander, L. E. in X-ray diffraction procedures, Wiley: New York, 1954.Google Scholar
  35. 35.
    Wilchinsky, Z. Orientation in crystalline polymers related to deformation. Polymer 1964, 5, 271–281.CrossRefGoogle Scholar
  36. 36.
    Ruland, W. Small-angle scattering studies on carbonized cellulose fibers. J. Polym. Sci., Part C: Polym. Symp. 1969, 28, 143–151.CrossRefGoogle Scholar
  37. 37.
    Guiner, A.; Fournet, G.; Walker, C. in Small angle scattering of X-raays, Wiley & Sons, New York, 1955.Google Scholar
  38. 38.
    Kratky, O.; Porod, G. Diffuse small-angle scattering of X-rays in colloid systems. J. Coll. Sci. 1949, 4, 35–70.CrossRefGoogle Scholar
  39. 39.
    Lin, C.; Kuo, J.; Chen, C.; Fang, J. Investigation of bifurcated hydrogen bonds within the thermotropic liquid crystalline polyurethanes. Polymer 2012, 53, 254–258.CrossRefGoogle Scholar
  40. 40.
    Dong, H.; Xin, Z.; Lu, X.; Lv, Y. Effect of-substituents on the surface characteristics and hydrogen bonding network of polybenzoxazines. Polymer 2011, 52, 1092–1101.CrossRefGoogle Scholar
  41. 41.
    Snyder, R.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. FTIR studies of polyimides: Thermal curing. Macromolecules 1989, 22, 4166–4172.CrossRefGoogle Scholar
  42. 42.
    Konieczny, J.; Wunder, S. Absence of noncyclic imide formation in PMDA-ODA polyimide. Macromolecules 1996, 29, 7613–7615.CrossRefGoogle Scholar
  43. 43.
    Ma, X.; Kang, C.; Chen, W.; Jin, R.; Guo, H.; Qiu, X.; Gao, L. Effect of multiple H-bonding on the properties of polyimides containing the rigid rod groups. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 570–581.CrossRefGoogle Scholar
  44. 44.
    Luo, L.; Yao, J.; Wang, X.; Li, K.; Huang, J.; Li, B.; Wang, H.; Feng, Y.; Liu, X. The evolution of macromolecular packing and sudden crystallization in rigid-rod polyimide via effect of multiple H-bonding on charge transfer (CT) interactions. Polymer 2014, 55, 4258–4269.CrossRefGoogle Scholar
  45. 45.
    Fan, L.; Zhao, D.; Bian, C.; Wang, Y.; Liu, G. Glass transition temperatures of copolymers from methyl methacrylate, styrene, and acrylonitrile: Binary copolymers. Polym. Bull. 2011, 67, 1311–1323.CrossRefGoogle Scholar
  46. 46.
    Jiang, G.; Huang, W.; Li, L.; Wang, X.; Pang, F.; Zhang, Y.; Wang, H. Structure and properties of regenerated cellulose fibers from different technology processes. Carbohyd. Polym. 2012, 87, 2012–2018.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xue-Min Dai
    • 1
    • 2
    • 3
  • Hong Gao
    • 4
  • Ran Zhang
    • 1
  • Zhi-Jun Du
    • 2
  • Tong-Fei Shi
    • 1
  • Xiang-Ling Ji
    • 1
  • Xue-Peng Qiu
    • 2
    Email author
  • Yong-Feng Men
    • 1
    Email author
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Polymer Composites Engineering Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.China Academy of Space TechnologyBeijingChina

Personalised recommendations