Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 3, pp 258–267 | Cite as

Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers

  • Sheng Xiang
  • Dong-Dong Zhou
  • Li-Dong Feng
  • Xin-Chao Bian
  • Gao LiEmail author
  • Xue-Si ChenEmail author
  • Tian-Chang Wang
Article
  • 52 Downloads

Abstract

The effect of the architecture of poly(ethylene glycol)/poly(L-lactide) (PEG/PLLA) block copolymers on the non-isothermal crystallization behaviors of PLLA blocks was investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). 1-Arm MPEG-b-PLLA and 4-arm PEG-b-PLLA (4PEG-b-PLLA) were synthesized by the ring-opening polymerization of Llactide in the presence of poly(ethylene glycol) methyl ether (MPEG) and 4-arm poly(ethylene glycol) (4PEG). 4-Arm PLLA-b-MPEG (4PLLA-b-PEG) was synthesized by coupling 4-arm PLLA and MPEG. The WAXD results indicated that the crystalline structure of PLLA blocks did not alter due to the different chain architectures. The average values of Avrami index (\(\bar{n}\)) were all above 4, which indicated that the nucleation mechanism of PLLA blocks was heterogeneous nucleation, regardless of the architectures. The overall crystallization rates were decreased markedly as following: MPEG-b-PLLA > 4PEG-b-PLLA > 4PLLA-b-PEG, ascribed to the different confinement by PEG blocks and to the steric hindrance of chain architectures. Therefore, the crystallization of PLLA blocks became more difficult and the crystallization activation energy of the PLLA blocks increased due to the confinement of chain architectures.

Keywords

Poly(L-lactide) Poly(ethylene glycol)/poly(L-lactide) block copolymer Non-isothermal crystallization Chain architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51303176, 51873209, 51573178, and 51773194) and the National Key Research and Development Program of China (No. 2016YFB0302500).

Supplementary material

10118_2019_2202_MOESM1_ESM.pdf (647 kb)
Influence of Chain Architectures on Crystallization behaviors of PLLA block in PEG/PLLA block copolymers

References

  1. 1.
    Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): Research, development and industrialization. Biotechnol J. 2010, 5, 1125–1136.CrossRefGoogle Scholar
  2. 2.
    Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356.CrossRefGoogle Scholar
  3. 3.
    Nampoothiri, K. M.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010,101, 8493–8501.CrossRefGoogle Scholar
  4. 4.
    Shi, X. D.; Sun, P. J.; Gan Z. H. Preparation of porous polylactide microspheres and their application in tissue engineering. Chinese J. Polym. Sci. 2018, 36, 712–719.CrossRefGoogle Scholar
  5. 5.
    Sun, Y.; He, C. Biodegradable “core-shell” rubber nanoparticles and their toughening of poly(lactides). Macromolecules 2013, 46, 9625–9633.CrossRefGoogle Scholar
  6. 6.
    Huang, S.; Sun, H.; Sun, J.; Li, G.; Chen, X. Biodegradable tough blends of poly(L-lactide) and poly(castor oil)-poly(Llactide) copolymer. Mater. Lett. 2014, 133, 87–90.CrossRefGoogle Scholar
  7. 7.
    Liu, Y.; Sun, J.; Bian, X.; Feng, L.; Xiang, S.; Sun, B.; Chen, Z.; Li, G.; Chen, X. Melt stereocomplexation from poly(L-lactic acid) and poly(D-lactic acid) with different optical purity. Polym. Degrad. Stab. 2013, 98, 844–852.CrossRefGoogle Scholar
  8. 8.
    Sun, C. B.; Mao, H. D.; Chen, F.; Fu, Q. Preparation of polylactide composite with excellent flame retardance and improved mechanical properties. Chinese J. Polym. Sci. 2018, 36, 1385–1393.CrossRefGoogle Scholar
  9. 9.
    Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Toughening effect of poly(D-lactide)-b-poly(butylene succinate)-b-poly(D-lactide) copolymers on poly(L-lactic acid) by solution casting method. Mater. Lett. 2015, 155, 94–96.CrossRefGoogle Scholar
  10. 10.
    Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-bbutylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003, 4, 1827–1834.CrossRefGoogle Scholar
  11. 11.
    Peponi, L. Marcos-Fernández, A. Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer 2012, 53, 4561–4568.CrossRefGoogle Scholar
  12. 12.
    Casas, M. T.; Puiggalí, J.; Raquez, J. M.; Dubois, P.; Córdova, M. E.; Müller, A. J. Single crystals morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Polymer 2011, 52, 5166–5177.CrossRefGoogle Scholar
  13. 13.
    Cerrai, P.; Tricoli, M.; Lelli, L.; Guerra, G. D.; Delguerra, R. S.; Cascone, M. G.; Giusti, P. Block-copolymers of L-lactide and poly(ethylene glycol) for biomedical applications. J. Mater. Sci-Mater. M. 1994, 5, 308–313.CrossRefGoogle Scholar
  14. 14.
    Kim, K. S.; Chung, S.; Chin, I. J.; Kim, M. N.; Yoon, J. S. Crystallization behavior of biodegradable amphiphilic poly(ethylene glycol)-poly(L-lactide) block copolymers. J. Appl. Polym. Sci. 1999, 72, 341–348.CrossRefGoogle Scholar
  15. 15.
    Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Feng, L.; Xiang, S.; Sun, B.; Chen, Z.; Li, G.; Chen, X. Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-è-PEG-è-PDLA. Polym. Degrad. Stab. 2014, 101, 10–17.CrossRefGoogle Scholar
  16. 16.
    Ren, K.; Cheng, Y.; He, C.; Xiao, C.; Li, G.; Chen, X. The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene glycol)-block-polypeptide copolymers. Polymer 2013, 54, 2466–2472.CrossRefGoogle Scholar
  17. 17.
    Shin, D.; Shin, K.; Aamer, K. A.; Tew, G. N.; Russell, T. P.; Lee, J. H.; Jho, J. Y. A Morphological study of a semicrystalline poly(L-lactic acid-b-ethylene oxide-b-L-lactic acid) triblock copolymer. Macromolecules 2005, 38, 104–109.CrossRefGoogle Scholar
  18. 18.
    Yang, J.; Liang, Y.; Luo, J.; Zhao, C.; Han, C. C. Multilength scale studies of the confined crystallization in poly(L-lactide)-block-poly(ethylene glycol) copolymer. Macromolecules 2012, 45, 4254–4261.CrossRefGoogle Scholar
  19. 19.
    Sun, J.; Hong, Z.; Yang, L.; Tang, Z.; Chen, X.; Jing, X. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer. Polymer 2004, 45, 5969–5977.CrossRefGoogle Scholar
  20. 20.
    Sun, J. R.; Chen, X. S.; He, C. L.; Jing, X. B. Morphology and structure of single crystals of poly(ethylene glycol)-poly(ecaprolactone) diblock copolymers. Macromolecules 2006, 39, 3717–3719.CrossRefGoogle Scholar
  21. 21.
    Zhang, J. M.; Duan, Y. X.; Domb, A. J.; Ozaki, Y. PLLA mesophase and its phase transition behavior in the PLLA-PEGPLLA copolymer as revealed by infrared spectroscopy. Macromolecules 2010, 43, 4240–4246.CrossRefGoogle Scholar
  22. 22.
    Zhou, D.; Shao, J.; Li, G.; Sun, J.; Bian, X.; Chen, X. Crystallization behavior of PEG/PLLA block copolymers: Effect of the different architectures and molecular weights. Polymer 2015, 62, 70–76.CrossRefGoogle Scholar
  23. 23.
    Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3215–3226.CrossRefGoogle Scholar
  24. 24.
    Zhou, D.; Sun, J.; Shao, J.; Bian, X.; Huang, S.; Li, G.; Chen, X. Unusual crystallization and melting behavior induced by microphase separation in MPEG-b-PLLA diblock copolymer. Polymer 2015, 80, 123–129.CrossRefGoogle Scholar
  25. 25.
    Zhao, W.; Li, C. Y.; Wu, C. J.; Liu, X. L.; Mou, Z. H.; Yao, C. G.; Cui, D. M. Synthesis of ultraviolet absorption polylactide via immortal polymerization of rac-lactide initiated by a salanyttrium catalyst. Chinese J. Polym. Sci. 2018, 36,202–206.Google Scholar
  26. 26.
    Yao, F.; Bai, Y.; Zhou, Y.; Liu, C.; Wang, H.; Yao, K. Synthesis and characterization of multiblock copolymers based on Llactic acid, citric acid, and poly(ethylene glycol). J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2073–2081.CrossRefGoogle Scholar
  27. 27.
    Feng, L. D.; Sun, B.; Bian, X. C.; Chen, Z. M.; Chen, X. S. Determination of D-lactate content in poly(lactic acid) using polarimetry. Polym. Test. 2010, 29, 771–776.CrossRefGoogle Scholar
  28. 28.
    Tsuji, H.; Matsumura, N.; Arakawa, Y. Stereocomplex crystallization and homocrystallization of star-shaped four-armed stereo diblock poly(lactide)s with different L-lactyl unit contents: Isothermal crystallization from the melt. J. Phys. Chem. B 2016, 120, 1183–1193.CrossRefGoogle Scholar
  29. 29.
    Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): Molecular weight dependence. Macromolecules 2007, 40, 6898–6905.CrossRefGoogle Scholar
  30. 30.
    Pan, P.; Zhu, B.; Kai, W.; Dong, T.; Inoue, Y. Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 2008, 41, 4296–4304.CrossRefGoogle Scholar
  31. 31.
    Shao, J.; Sun, J.; Bian, X.; Zhou, Y.; Li, G.; Chen, X. The formation and transition behaviors of the mesophase in poly(Dlactide)/ poly(L-lactide) blends with low molecular weights. CrystEngComm 2013, 15, 6469–6476.CrossRefGoogle Scholar
  32. 32.
    Shao, J.; Xiang, S.; Bian, X.; Sun, J.; Li, G.; Chen, X. Remarkable melting behavior of PLA stereocomplex in linear PLLA/PDLA blends. Ind. Eng. Chem. Res. 2015, 54, 2246–2253.CrossRefGoogle Scholar
  33. 33.
    Jeziorny, A. Parameters characterizing the kinetics of the nonisothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 1978, 19, 1142–1144.CrossRefGoogle Scholar
  34. 34.
    Liu, T.; Mo, Z.; Zhang, H. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J. Appl. Polym. Sci. 1998, 67, 815–821.CrossRefGoogle Scholar
  35. 35.
    Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 2006, 27,1515–1532.Google Scholar
  36. 36.
    Vyazovkin, S.; Dollimore, D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Model. 1996, 36, 42–45.Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sheng Xiang
    • 1
    • 2
    • 3
  • Dong-Dong Zhou
    • 4
  • Li-Dong Feng
    • 1
    • 2
  • Xin-Chao Bian
    • 1
    • 2
  • Gao Li
    • 1
    • 2
    Email author
  • Xue-Si Chen
    • 1
    • 2
    Email author
  • Tian-Chang Wang
    • 1
    • 2
  1. 1.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Jilin Biomedical Polymers Engineering LaboratoryChangchunChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.South China Advanced Institute for Soft Matter Science and TechnologySouth China University of TechnologyGuangzhouChina

Personalised recommendations