Advertisement

Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens

  • Jia-Long Wu
  • Chi Zhang
  • Wei QinEmail author
  • Da-Ping Quan
  • Ming-Liang Ge
  • Guo-Dong LiangEmail author
Article
  • 58 Downloads

Abstract

Thermoresponsive fluorescent polymers (TFPs) with unique temperature-dependent luminescent properties are of great importance for the development of new functional devices in recent years. Herein, we facilely synthesized an efficient blue-emissive polymer, abbreviated as PCB-TPE, using tetraphenylethene (TPE) as the main building block. PCB-TPE is thermally stable with a novel property of aggregation induced emission (AIE). The thermoresponsive property and mechanism of PCB-TPE were investigated. Its emission shows temperature-dependent features and reveals fine details in the thermal transitions from −10 °C to 60 °C. The polymer offers a platform for the development of efficient luminescent materials for further biological and optoelectronic applications.

Keywords

Aggregation induced emission Thermoresponsive Fluorescence Crystallization Polymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 21374136), the Fundamental Research Funds for the Central Universities (Nos. 17lgjc03 and 18lgpy04), and the Opening Project of the Key Laboratory of Polymer Processing Engineering (South China University of Technology, Ministry of Education, No. KFKT1703).

References

  1. 1.
    Mei, J.; Huang, Y. H.; He, T. Progress and trends in AIE–based bioprobes: A brief overview. ACS Appl. Mater. Interfaces 2018,10,12217–12261.CrossRefGoogle Scholar
  2. 2.
    Yang, J.; Huang, J.; Li, Q.; Li, Z. Blue AIEgens: Approaches to control the intramolecular conjugation and the optimized performance of OLED devices. J. Mater. Chem. C 2016, 4, 2663–2684.CrossRefGoogle Scholar
  3. 3.
    Li, Q.; Li, Z. The strong light–emission materials in the aggregated state: What happens from a single molecule to the collective group. Adv. Sci. 2017, 4, 1600484.CrossRefGoogle Scholar
  4. 4.
    Wu, Y. W.; Qin, A. J.; Tang, B. Z. AIE–active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 35, 141–154.CrossRefGoogle Scholar
  5. 5.
    Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic polymers~Function by design. Chem. Re. 2014, 114, 3037–3068.CrossRefGoogle Scholar
  6. 6.
    Wang, D. P.; Miyamato, R.; Shiraishi, Y.; Hirai, T. BODIPYconjugated thermoresponsive copolymer as a fluorescent thermometer based on polymer microviscosity. Langmuir 2009, 25, 13176–13182.CrossRefGoogle Scholar
  7. 7.
    Yan, Q.; Yuan, J. Y.; Yuan, W. Z.; Zhou, M.; Yin, Y. W.; Pan, C. Y. Copolymer logical switches adjusted through core–shell micelles: From temperature response to fluorescence response. Chem. Commun. 2008, 46, 6188–6190.CrossRefGoogle Scholar
  8. 8.
    Shiraishi, Y.; Miyamoto, R.; Hirai, T. A hemicyanine–conjugated copolymer as a highly sensitive fluorescent thermometer. Langmuir 2008, 24, 4273–4279.CrossRefGoogle Scholar
  9. 9.
    Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009, 131, 2766–2767.CrossRefGoogle Scholar
  10. 10.
    Zhao, L. Y.; Liu, Y. N.; Wang, S. F.; Tao, Y. T.; Wang, F. F.; Zhang, X. W.; Huang, W. Novel hyperbranched polymers as host materials for green thermally activated delayed fluorescence OLEDs. Chinese J. Polym. Sci. 2017, 35, 490–502.CrossRefGoogle Scholar
  11. 11.
    Chen, J. R.; Zhao, J.; Xu, B. J.; Yang, Z. Y.; Liu, S. W.; Xu, J. R.; Zhang, Y.; Wu, Y. C.; Lv, P. Y.; Chi, Z. G. An AEE–active polymer containing tetraphenylethene and 9,10–distyrylanthracene moieties with remarkable mechanochromism. Chinese J. Polym. Sci. 2017, 35, 282–292.CrossRefGoogle Scholar
  12. 12.
    Tang, L.; Jin, J. K.; Qin, A. J.; Yuan, W. Z.; Mao, Y.; Mei, J.; Sun, J. Z.; Tang, B. Z. A fluorescent thermometer operating in aggregation–induced emission mechanism: Probing thermal transitions of PNIPAM in water. Chem. Commun. 2009, 33, 4974–4976.CrossRefGoogle Scholar
  13. 13.
    Guo, Y.; Yu, X.; Xue, W.; Huang, S.; Dong, J.; Wei, L.; Maroncelli, M.; Li, H. Synthesis, structures, and properties of a fluoranthene–based biphenol polymer as a fluorescent nanothermometer. Chem. Eng. J. 2014, 240, 319–330.CrossRefGoogle Scholar
  14. 14.
    Kim, S.; Torkelson, J. M. Distribution of glass transition temperatures in free–standing, nanoconfined polystyrene films: A test of de Gennes' sliding motion mechanism. Macromolecules 2011, 44, 4546–4553.CrossRefGoogle Scholar
  15. 15.
    Pietsch, C.; Vollrath, A.; Hoogenboom, R.; Schubert, U. S. A fluorescent thermometer based on a pyrene–labeled thermoresponsive polymer. Sensors 2010, 10, 7979–7990.CrossRefGoogle Scholar
  16. 16.
    Wang, Z.; Chen, S.; Lam, J. W. Y.; Qin, W.; Kwok, R. T. K.; Xie, N.; Hu, Q. L.; Tang, B. Z. Long–term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J. Am. Chem. Soc. 2013, 135, 8238–8245.CrossRefGoogle Scholar
  17. 17.
    Hu, R.; Kang, Y.; Tang, B. Z. Recent advances in AIE polymers. Polymer J. 2016, 48, 359–370.CrossRefGoogle Scholar
  18. 18.
    Zhao, W.; Li, C.; Liu, B.; Wang, X.; Li, P.; Wang, Y.; Wu, C.; Yao, C.; Tang, T.; Liu, X. A new strategy to access polymers with aggregation–induced emission characteristics. Macromolecules 2014, 47, 5586–5594.CrossRefGoogle Scholar
  19. 19.
    Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation–induced emission: Together we shine, united we soar! Chem. Rv. 2015,115,11718–11940.CrossRefGoogle Scholar
  20. 20.
    Huang, M.; Hsu, C. H.; Wang, J.; Mei, S.; Dong, X.; Li, M.; Liu, H.; Zhang, W.; Aida, T.; Zhang, W. B.; Yue, K.; Cheng, S. Z. D. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 2015, 348, 424–428.CrossRefGoogle Scholar
  21. 21.
    Bao, S. P.; Wu, Q. H.; Qin, W.; Yu, Q. L.; Wang, J.; Liang, G. D.; Tang, B. Z. Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. Polym. Chem. 2015, 6, 3537–3542.CrossRefGoogle Scholar
  22. 22.
    Mindemark, J.; Bowden, T. Synthesis and polymerization of alkyl halide–functional cyclic carbonates. Polymer 2011, 52, 5716–5722.CrossRefGoogle Scholar
  23. 23.
    Liang, G. D.; Ren, F.; Gao, H. Y.; Wu, Q.; Zhu, F. M.; Tang, B. Z. Continuously–tunable fluorescent polypeptides through polymer–assisted assembly strategy. Polym. Chem. 2016, 7, 5181.CrossRefGoogle Scholar
  24. 24.
    Wei, W.; Feng, S.; Zheng, C. X.; Liang, G. D.; Gao, H. Y.; Wu, Q.; Zhu, F. M. Glass transition and quantum yield for fluorescent labelled polystyrene core–forming block in self–assembled nanomicelles of amphiphilic diblock copolymers. J. Polym. Res. 2015, 22, 212.CrossRefGoogle Scholar
  25. 25.
    Sasaki, T. Melting of poly(e–caprolactone) studied by step–heating calorimetry. J. Therm. Anal. Calorim. 2013, 111, 717–724.CrossRefGoogle Scholar
  26. 26.
    Liu, C. L.; Lin, M. C.; Chen, H. L.; Műller, A. J. Evolution of crystal orientation in one–dimensionally confined space templated by lamellae–forming block copolymers. Macromolecules 2015, 48, 4451–4460.CrossRefGoogle Scholar
  27. 27.
    He, W. N.; Zhou, B.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Two growth modes of semicrystalline cylindrical poly(e–caprolactone)–è–poly(ethylene oxide) micelles. Macromolecules 2012, 45, 9768–9778.CrossRefGoogle Scholar
  28. 28.
    He, W. N.; Xu, J. T. Crystallization assisted self–assembly of semicrystalline block copolymers. Prog. Polym. Sci. 2012, 37, 1350–1400.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PCFM and GDHPPC labs, School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.School of ChemistrySun Yat-sen UniversityGuangzhouChina
  3. 3.Key Laboratory of Polymer Processing Engineering, South China University of TechnologyMinistry of EducationGuangzhouChina

Personalised recommendations