Advertisement

Binuclear and Hexanuclear Ti(IV) Complexes Supported by [OOOO]4–-type Ligand for Preparing Disentangled UHMWPE

  • Vladislav A. Tuskaev
  • Svetlana Ch. Gagieva
  • Dmitry A. Kurmaev
  • Viktor G. Vasil’ev
  • Nikolay A. Kolosov
  • Sergey V. Zubkevich
  • Elena S. Mikhaylik
  • Evgenii K. Golubev
  • Galina G. Nikiforova
  • Pavel A. Zhizhko
  • Olga A. Serenko
  • Boris M. Bulychev
Article
  • 6 Downloads

Abstract

Binuclear and hexanuclear titanium complexes stabilized by tetradentate [OOOO]4–-type ligand were active in ethylene polymerization in the presence of Et2AlCl/Bu2Mg binary co-catalyst, giving high molecular weight polyethylene. The binuclear complex showed significantly higher catalytic activity and thermal stability in comparison to mononuclear analogue. Ultra high molecular weight polyethylene (UHMWPE) samples were processed by a solid-state uniaxial deformation into high-strength (up to 2.5 GPa) and highmodulus (over 100 GPa) oriented film tapes, which indirectly indicates a low degree of entanglements between the macromolecular chains.

Keywords

Binuclear catalysts Titanium Ethylene Ziegler-Natta polymerization UHMWPE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Russian Science Foundation (No. 16-13-10502).

Supplementary material

10118_2019_2197_MOESM1_ESM.pdf (293 kb)
Binuclear and hexanuclear Ti(IV) complexes supported by [OOOO]4–-type ligand for preparing disentangled UHMWPE

References

  1. 1.
    Kurtz, S. M. in The UHMWPE Handbook, Ultra high molecular weight poiyethylene in total joint replacement. Elsevier, Academic Press, New York, 2004, p. 397Google Scholar
  2. 2.
    Smith, P.; Chanzy, H. D.; Rotzinger, B. P. Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength fibres. Poly. Commun. 1985, 26, 258–261.Google Scholar
  3. 3.
    Smith, P.; Chanzy, H. D.; Rotzinger, B. P. Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength/high modulus materials. Mater. Sci. 1987, 22, 523–531.CrossRefGoogle Scholar
  4. 4.
    Wang, L. H.; Porter, R. S. Rolling and roll–drawing of ultrahigh molecular weight polyethylene reactor powders. J. Appl. Poiym. Sci. 1991, 43, 1559–1564.CrossRefGoogle Scholar
  5. 5.
    Rastogi, S.; Yao, Y.; Ronca, S.; Bos, J.; van der Eem, J. Unprecedented high–modulus high–strength tapes and films of ultrahigh molecular weight polyethylene via solvent–free route. Macromolecules 2011, 44, 5558–5568.CrossRefGoogle Scholar
  6. 6.
    Yao, Y.; Jiang, S.; Rastogi, S. 13C solid state NMR characterization of structure and orientation development in the narrow and broad molar mass disentangled UHMWPE. Macromoiec Macromoiecules 2014, 47, 1371–1382.CrossRefGoogle Scholar
  7. 7.
    Ozerin, A. N.; Ivanchev, S. S.; Chvalun, S. N.; Aulov, V. A.; Ivancheva, N. I.; Bakeev, N. F. Properties of oriented film tapes prepared via solid–state processing of a nascent ultrahigh–molecular–weight polyethylene reactor powder synthesized with a postmetallocene catalyst. Poi/ymer Science, Ser. A 2012, 54, 950–954.CrossRefGoogle Scholar
  8. 8.
    Solov’ev, M. V.; Gagieva, S. Ch.; Tuskaev, V. A.; Bravaya, N. M.; Gadalova, O. E.; Khrustalev, V. N.; Borissova, A. O.; Novel titanium(IV) complexes with 2,4-di-tert-butyl-6-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenol in ethene polymerization. Russ. Chem. Bull. 2011, 60, 2227–2235.CrossRefGoogle Scholar
  9. 9.
    Rishina, L. A.; Lalayan, S. S.; Gagieva, S. Ch.; Tuskaev, V. A.; Perepelitsyna, E. O.; Kissin, Y. V. Polymers of propylene and higher 1–alkenes produced with postmetallocene complexes containing a saligenin–type ligand. Polymer 2013, 54, 6526–6235.CrossRefGoogle Scholar
  10. 10.
    Tuskaev, V. A.; Gagieva, S. Ch.; Solov’ev, M. V.; Kurmaev, D. A.; Kolosov, N. A.; Fedyanin, I. V.; Bulychev, B. M. Coordination compounds of titanium(IV) and 2–hydroxymethylphenol derivatives: Their synthesis, structure and catalytic activity in ethylene and 1–hexene polymerization. J. Organoimet. Chem. 2015, 797, 159–164.CrossRefGoogle Scholar
  11. 11.
    Rishina, L. A.; Lalayan, S. S.; Gagieva, S. Ch.; Tuskaev, V. A.; Shchegolikhin, A. N.; Shashkin, D. P.; Kissin, Y. V. Titanium complex containing a saligenin ligand–new universal postmetallocene polymerization catalyst: Copolymerization of ethylene with higher a–olefins. J. Res. Updates Poiym. Sci. 2015, 3, 216–226.CrossRefGoogle Scholar
  12. 12.
    Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Zvukova, T. M.; Bulychev, B. M. Novel bi–and hexanuclear titanium(IV) complexes: Synthesis, structure and catalytic activities in oligoand polymerization of 1–hexene. J. Organoimet. Chem. 2016, 802, 9–14.CrossRefGoogle Scholar
  13. 13.
    Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Sizov, A. I.; Mikhaylik, E. S.; Golubev, E. K.; Bulychev, B. M. Chlorideand alkoxo–titanium(IV) complexes stabilized by 2–hydroxymethylphenol derivative as catalysts for the formation of ultrahigh molecular weight polyethylene nascent reactor powders. Polyhedron 2017, 122, 179–183.Google Scholar
  14. 14.
    Tuskaev, V. A.; Gagieva, S. Ch.; Kurmaev, D. A.; Zubkevich, S. V.; Kolosov, N. A.; Golubev, E. K.; Nikiforova, G. G.; Khrustalev, V. N.; Bulychev, B. M. Novel titanium(IV) complexes stabilized by 2–hydroxybenzyl alcohol derivatives as catalysts for UHMWPE production. J. Organoimet. Chem. 2018, 867, 266–272.CrossRefGoogle Scholar
  15. 15.
    Delferro, M.; Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 2011, 111, 2450–2485.CrossRefGoogle Scholar
  16. 16.
    Ainooson, M.; Meyer, F., in Comprehensive Inorganic Chemistry II (Second Edition), Volume 8: Coordination and Organometallic Chemistry, 2013, 433–458.CrossRefGoogle Scholar
  17. 17.
    Chen, Z.; Yao, E.; Wang, J.; Gong, X.; Ma, Y. Ethylene (co)polymerization by binuclear nickel phenoxyiminato catalysts with cofacial orientation. Macromolecules 2016, 49, 8848–8854.CrossRefGoogle Scholar
  18. 18.
    Chen, Z.; Zhao, X.; Gong, X.; Xu, D.; Ma, Y. Macrocyclic trinuclear nickel phenoxyimine catalysts for high–temperature polymerization of ethylene and isospecific polymerization of propylene. Macromolecules 2017, 50, 6561–6568.CrossRefGoogle Scholar
  19. 19.
    Rong, Ch.; Wang, F.; Li, W.; Chen, M. Ethylene polymerization by dinuclear xanthene–bridged imino–and aminopyridyl nickel complexes. Organoimetallics 2017, 36, 4458–4464.Google Scholar
  20. 20.
    Kissin, Y. V.; Nowlin, T. E.; Mink, R. I.; Brandolini, A. J. A new cocatalyst for metallocene complexes in olefin polymerization. Macromolecules 2000, 33, 4599–4601.CrossRefGoogle Scholar
  21. 21.
    Kissin, Y. V.; Mink, R. I.; Brandolini, A. J., Nowlin, T. E. AlR2Cl/MgR2 combinations as universal cocatalysts for Zieghttps ler–Natta, metallocene, and post–metallocene catalysts. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3271–3285.CrossRefGoogle Scholar
  22. 22.
    Joo, Y. K.; Zhou, H.; Lee, S. G.; Lee, H. K.; Song, J. K. Solidstate compaction and drawing of nascent reactor powders of ultra–high–molecular–weight polyethylene. J. Appl. Polym. Sci. 2005, 98, 718–730.CrossRefGoogle Scholar
  23. 23.
    Ivancheva, N. I.; Sanieva, D. V.; Fedorov, S. P.; Oleinik, I. V.; Oleinik, I. I.; Tolstikov, G. A.; Ivancheva, S. S. Self–immobilized catalysts for ethylene polymerization based on various phenoxyimine titanium halide complexes. Russ. Chem. Bull. 2012, 61, 836–842.CrossRefGoogle Scholar
  24. 24.
    Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra, P. J. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780–2788.Google Scholar
  25. 25.
    Atiqullah, M.; Hammawa, H.; Hamid, H. Modeling the solubility of ethylene and propylene in a typical polymerization diluent: Some selected situations. Eur. Polym. J. 1998, 34, 1511–1520.CrossRefGoogle Scholar
  26. 26.
    Wu, J.; Pan, Q.; Rempel, G. L. Solubility of ethylene in toluene and toluene/styrene–butadiene rubber solutions. J. Appl. Polym. Sci. 2005, 96, 645–649.CrossRefGoogle Scholar
  27. 27.
    Eskelinen, M. J.; Seppälä, V. Effect of polymerization temperature on the polymerization of ethylene with dicyclopentadienylzirconiumdichloride/ methylalumoxane catalyst. Eur. Polym. J. 1996, 32, 331–335.CrossRefGoogle Scholar
  28. 28.
    Ye, J. D.; Fang, Z. Q.; Wang, W. Strong influences of polymerization temperature on ethylene/1–hexene copolymerization catalyzed by (2–PhInd)2ZrCl2/methyl aluminoxane. J. Zhejiang Univ. Sci. 2005, 6B, 1009–1014.Google Scholar
  29. 29.
    van Kimmenade, E. M. E.; Loos, J.; Niemantsverdriet, J. W.; Thune, P. C. The effect of temperature on ethylene polymerization over flat Phillips model catalysts. J. Catal. 2006, 240, 39–46.CrossRefGoogle Scholar
  30. 30.
    Kissin, Y. V. in Alkene polymerization reactions with transition metal catalysts. Elsevier: Amsterdam, 2008, p. 495.Google Scholar
  31. 31.
    Kaminsky, W. Olefin polymerization catalyzed by metallocenes. Adv. Catal. 2002, 46, 90–152.Google Scholar
  32. 32.
    Helldörfer, M.; Backhaus, J.; Alt, H. G. The influence of the ligand structure on the properties of (a–diimine)nickel catalysts in the polymerization and oligomerization of ethylene. Inorg. Chim. Acta 2003, 351, 34–42.CrossRefGoogle Scholar
  33. 33.
    Costa, M. A. S.; Coutinho, F. M. B.; Santa Maria, L. C. The role of prepolymerization on Ziegler–Natta nonsupported catalyst for propylene polymerization. Polymer Reaction Engineering 1994, 2, 241–250.CrossRefGoogle Scholar
  34. 34.
    Bochmann M. The chemistry of catalyst activation: The case of group 4 polymerization catalysts. Organometallics 2010, 29, 4711–4740.Google Scholar
  35. 35.
    Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. FI catalysts for olefin polymerization—A comprehensive treatment. Chem. Rev. 2011, 111, 2363–2449.CrossRefGoogle Scholar
  36. 36.
    Talebi, S.; Duchateau, R.; Rastogi, S.; Kaschta, J.; Peters, G. W. M.; Lemstra P. J. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 2010, 43, 2780–2788.Google Scholar
  37. 37.
    Romano, D.; Andablo–Reyes, E. A.; Ronca, S.; Rastogi, S. Effect of a cocatalyst modifier in the synthesis of ultrahigh molecular weight polyethylene having reduced number of entanglements. J. Polym. Sci., Part A: Polymer Chem. 2013, 51, 1630–1635.CrossRefGoogle Scholar
  38. 38.
    Gagieva, S. Ch.; Tuskaev, V. A.; Fedyanin, I. V.; Buzin, M. I.; Vasil’ev, V. G.; Nikiforova, G. G.; Afanas’ev, E. S.; Zubkevich, S. V.; Kurmaev, D. A.; Kolosov, N. A.; Mikhaylik, E. S.; Golubev, E. K.; Sizov, A. I.; Bulychev, B. M. Novel titanium(IV) diolate complexes: Synthesis, structure and catalytic activities in ultra–high molecular weight polyethylene production. J. Organomet. Chem. 2017, 828, 89–95.CrossRefGoogle Scholar
  39. 39.
    Tuskaev, V. A.; Gagieva, S. C.; Kurmaev D. A.; Khrustalev V. N.; Dorovatovskii P. V.; Mikhaylik E. S.; Golubev E. K.; Buzin M. I.; Zubkevich S. V.; Kolosov N. A.; Nikiforova G. G.; Vasil’ev V. G.; Bulychev B. M. Novel titanium(IV) complexes with 1,2–diolate ligands: Synthesis, structure and catalytic activities in ultra–high molecular weight polyethylene production. J. Organomet. Chem in press, Doi: 10.1016/j.jorganchem.2018.09.014.Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vladislav A. Tuskaev
    • 1
    • 2
  • Svetlana Ch. Gagieva
    • 1
  • Dmitry A. Kurmaev
    • 1
  • Viktor G. Vasil’ev
    • 2
  • Nikolay A. Kolosov
    • 1
  • Sergey V. Zubkevich
    • 1
  • Elena S. Mikhaylik
    • 2
    • 3
  • Evgenii K. Golubev
    • 2
    • 3
  • Galina G. Nikiforova
    • 2
  • Pavel A. Zhizhko
    • 2
  • Olga A. Serenko
    • 2
  • Boris M. Bulychev
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  3. 3.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations