Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 3, pp 216–226 | Cite as

Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix

  • Da-Wei Shi
  • Xiang-Ling Lai
  • Yuan-Ping Jiang
  • Cong Yan
  • Zheng-Ying Liu
  • Wei Yang
  • Ming-Bo YangEmail author
Article
  • 22 Downloads

Abstract

The low melt strength and poor crystallization behavior severely limit the processing and application of poly(lactic acid) (PLA) as biodegradable film materials. In this work, three-arm poly(L-lactic acid) (3A-PLLA) grafted silica nanoparticles with two kinds of topology structures were introduced into PLA matrix to improve the biodegradation performance. Different methods were used to characterize the structure of the grafted 3A-PLLA chains, the grafting density, and the thermal decomposition behavior of the nanoparticles. By varying the mass ratios of raw materials and altering the order of dropping solution in the reaction, high grafting densitytangled 3A-PLLA grafted SiO2 was synthesized as “3A-PLLA grafting to SiO2” (GTS), while low grafting density-stretched 3A-PLLA grafted SiO2 was obtained as “SiO2 grafting to 3A-PLLA” (GTA). Topology of nanoparticles as well as the filler-matrix interaction is critically important to structure bio-nanocomposites with desirable properties. Thus, the GTS and GTA nanoparticles were introduced into PLA matrix to assess the effect. The SEM images showed the uniform dispersion of the modified nanoparticles, while the shear rheology results revealed that GTA nanoparticles made a more significant contribution on the melt-strengthening and relaxation time-extension of PLA. Moreover, it is suggested that GTA nanoparticles were more effective to act as a nucleating agent for PLA, which was proved by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) researches. All of the improvements mentioned above of GTA nanocomposites can be ascribed to stronger entanglements between 3A-PLLA stretched by nano-SiO2 and PLA matrix.

Keywords

Poly(lactic acid) Nanocomposites Surface grafting Topology Crystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors sincerely acknowledge the financial support of National Natural Science Foundation of China (Nos. 51721091, 21674069 and 21174092).

References

  1. 1.
    Maharana, T.; Mohanty, B.; Negi, Y. S. Melt-solid polycondensation of lactic acid and its biodegradability. Prog. Polym. Sci. 2009, 34, 99–124.CrossRefGoogle Scholar
  2. 2.
    Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules 2011, 12, 523–532.CrossRefGoogle Scholar
  3. 3.
    Zhang, P.; Hong, Z.; Yu, T.; Chen, X.; Jing, X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials 2009, 30, 58–70.CrossRefGoogle Scholar
  4. 4.
    Revati, R.; Majid, M. S. A.; Ridzuan, M. M.; Normahira, M.; Nasir, N. F. M.; Rahman, M. N. Y.; Gibson, A. G. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mater. Sci. Eng. C-Mater. Biol. Appli. 2017, 75, 752–759.CrossRefGoogle Scholar
  5. 5.
    Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol. Acta 2014, 53, 501–517.CrossRefGoogle Scholar
  6. 6.
    Pinese, C.; Gagnieu, C.; Nottelet, B.; Rondot-Couzin, C.; Hunger, S.; Coudane, J.; Garric, X. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration. J. Biomed. Mater. Res. B-Appl. Biomater. 2017, 105, 1778–1788.CrossRefGoogle Scholar
  7. 7.
    Chinsirikul, W.; Rojsatean, J.; Hararak, B.; Kerddonfag, N.; Aontee, A.; Jaieau, K.; Kumsang, P.; Sripethdee, C. Flexible and tough poly(lactic acid) films for packaging applications: Property and processability improvement by effective reactive blending. Packag. Technol. Sci. 2015, 28, 741–759.CrossRefGoogle Scholar
  8. 8.
    Sirisinha, K.; Somboon, W. Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide). J. Appl. Polym. Sci. 2012, 124, 4986–4992.Google Scholar
  9. 9.
    Hua, S.; Chen, F.; Liu, Z. Y.; Yang, W.; Yang, M. B. Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: Synthesis, characterization and properties. RSC Adv. 2016, 6, 1973–1983.CrossRefGoogle Scholar
  10. 10.
    Zhang, M.; Thomas, N. L. Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv. Polym. Technol. 2011, 30, 67–79.CrossRefGoogle Scholar
  11. 11.
    Jestin, J.; Cousin, F.; Dubois, I.; Ménager, C.; Schweins, R.; Oberdisse, J.; Boué, F. Anisotropic reinforcement of nanocomposites tuned by magnetic orientation of the filler network. Adv. Mater. 2008, 20, 2533–2540.CrossRefGoogle Scholar
  12. 12.
    Li, Y.; Sun, X. S. Preparation and characterization of polymerinorganic nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylated MgO. Biomacromolecules 2010, 11, 1847–1855.CrossRefGoogle Scholar
  13. 13.
    Hong, Z.; Qiu, X.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer 2004, 45, 6699–6706.CrossRefGoogle Scholar
  14. 14.
    Jin, T. Y.; Sang, C. L.; Jeong, Y. G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010, 70, 776–782.CrossRefGoogle Scholar
  15. 15.
    Chevigny, C.; Dalmas, F.; Cola, E. D.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J. Polymer-grafted-nanoparticles nanocomposites: Dispersion, grafted chain conformation, and rheological behavior. Macromolecules 2011, 44, 122–133.CrossRefGoogle Scholar
  16. 16.
    Carrot, G.; Rutot-Houzé, D,; Pottier, A.; Degée, P.; Hilborn, J.; Dubois, P. Surface-initiated ring-opening polymerization: A versatile method for nanoparticle ordering. Macromolecules 2002, 35, 8400–8404.CrossRefGoogle Scholar
  17. 17.
    Shinoda, H.; Matyjaszewski, K. Structural control of poly(methyl methacrylate)-g-poly(lactic acid) graft copolymers by atom transfer radical polymerization (ATRP). Macromolecules 2001, 34, 6243–6248.CrossRefGoogle Scholar
  18. 18.
    Perruchot, C.; Khan, M. A.; A. Kamitsi, A.; Armes, S. P.; And, T. V. W.; Patten, T. E. Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir 2001, 17, 4479–4481.CrossRefGoogle Scholar
  19. 19.
    Qin, S. H.; Qin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 2004, 37, 752–757.CrossRefGoogle Scholar
  20. 20.
    Chen, G. X.; Kim, H. S.; Park, B. H.; Yoon, J. S. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). J. Phys. Chem. B 2005, 109, 22237–22243.CrossRefGoogle Scholar
  21. 21.
    Wu, F.; Lan, X. R.; Ji, D. Y.; Liu, Z. Y.; Yang, W.; Yang, M. B. Grafting polymerization of polylactic acid on the surface of nano-SiO2 and properties of PLA/PLA-grafted-SiO2 nanocomposites. J. Appl. Polym. Sci. 2013, 129, 3019–3027.CrossRefGoogle Scholar
  22. 22.
    Wu, F.; Zhang, B.; Yang, W.; Liu, Z. Y.; Yang, M. B. Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer 2014, 55, 5760–5772.CrossRefGoogle Scholar
  23. 23.
    Kim, E. S.; Kim, B. C.; Kim, S. H. Structural effect of linear and star-shaped poly(L-lactic acid) on physical properties. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 939–946.CrossRefGoogle Scholar
  24. 24.
    Zhou, M.; Zhou, P.; Xiong, P.; Qian, X.; Zheng, H. Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender. Macromol. Res. 2015, 23, 231–236.CrossRefGoogle Scholar
  25. 25.
    Xu, H.; Fang, H.; Bai, J.; Zhang, Y.; Wang, Z. Preparation and characterization of high-melt-strength polylactide with longchain branched structure through ?-radiation-induced chemical reactions. Ind. Eng. Chem. Res. 2014, 53, 1150–1159.CrossRefGoogle Scholar
  26. 26.
    Mannion, A. M.; Bates, F. S.; Macosko, C. W. Synthesis and rheology of branched multiblock polymers based on polylactide. Macromolecules 2016, 49, 4587–4598.CrossRefGoogle Scholar
  27. 27.
    Fan, Y. J.; Nishida, H.; Shirai, Y.; Endo, T. Thermal stability of poly(L-lactide): Influence of end protection by acetyl group. Polym. Degrad. Stab. 2004, 84, 143–149.CrossRefGoogle Scholar
  28. 28.
    Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y. Rheology and crystallization of long-chain branched poly(L-lactide)s with controlled branch length. Ind. Eng. Chem. Res. 2012, 51, 10731–10741.CrossRefGoogle Scholar
  29. 29.
    George, K. A.; Schue, F.; Chirila, T. V.; Wentrup-Byrne, E. Synthesis of four-arm star poly(L-lactide) oligomers using an in situ-generated calcium-based initiator. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4736–4748.CrossRefGoogle Scholar
  30. 30.
    Lu, X.; Lv, X.; Sun, Z.; Zheng, Y. Nanocomposites of poly(Llactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. Eur. Polym. J. 2008, 44, 2476–2481.CrossRefGoogle Scholar
  31. 31.
    Kim, S. H.; Han, Y. K.; Kim, Y. H.; Hong, S. I. Multifunctional initiation of lactide polymerization by stannous octoate pentaerythritol. Makromol. Chem. 1992, 193, 1623–1631.CrossRefGoogle Scholar
  32. 32.
    Zhang, C. X.; Wang, B.; Chen, Y.; Cheng, F.; Jiang, S. C. Amphiphilic multiarm star polylactide with hyperbranched polyethylenimine as core: A systematic reinvestigation. Polymer 2012, 53, 3900–3909.CrossRefGoogle Scholar
  33. 33.
    Shi, W. P.; Zhao, C. Y.; Li, S. M.; Fan, Z. Y. Synthesis of triarm PLLA-PDLA block copolymers and its stereocomplex crystallization behavior. Chem. J. Chin. Univ.-Chin. 2012, 33, 2092–2098.Google Scholar
  34. 34.
    Dorgan, J. R.; Williams, J. S.; Lewis, D. N. Melt rheology of poly(lactic acid): Entanglement and chain architecture effects. J. Rheol. 1999, 43, 1141–1155.CrossRefGoogle Scholar
  35. 35.
    Hong, Z. K.; Zhang, P. B.; He, C. L.; Qiu, X. Y.; Liu, A. X.; Chen, L.; Chen, X. S.; Jing, X. B. Nano-composite of poly(Llactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 2005, 26, 6296–6304.CrossRefGoogle Scholar
  36. 36.
    Zou, J.; Ma, T.; Zhang, J.; He, W.; Huang, F. Preparation and characterization of PLLA-ESO/surface-grafted silica nanocomposites. Polym. Bull. 2011, 67, 1261–1271.CrossRefGoogle Scholar
  37. 37.
    Luo, Y. B.; Wang, X. L.; Xu, D.Y.; Wang, Y. Z. Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Appl. Surf. Sci. 2009, 255, 6795–6801.CrossRefGoogle Scholar
  38. 38.
    Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314, 1107–1110.CrossRefGoogle Scholar
  39. 39.
    Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A.; Jasiuk, I. Experimental trends in polymer nanocomposites -a review. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2005, 393, 1–11.CrossRefGoogle Scholar
  40. 40.
    Li, H. B.; Huneault, M. A. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 2007, 48, 6855–6866.CrossRefGoogle Scholar
  41. 41.
    Nofar, M.; Zhu, W. L.; Park, C. B.; Randall, J. Crystallization kinetics of linear and long-chain-branched polylactide. Ind. Eng. Chem. Res. 2011, 50, 13789–13798.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Da-Wei Shi
    • 1
  • Xiang-Ling Lai
    • 1
  • Yuan-Ping Jiang
    • 1
  • Cong Yan
    • 1
  • Zheng-Ying Liu
    • 1
  • Wei Yang
    • 1
  • Ming-Bo Yang
    • 1
    Email author
  1. 1.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations