Chinese Journal of Polymer Science

, Volume 37, Issue 2, pp 136–141 | Cite as

Preparation and Characterization of Flexible, Transparent and Thermally Stable Aromatic Co-polyamides

  • José Antonio Tec-Sánchez
  • Andrés Iván Oliva Arias
  • Manuel Aguilar-Vega
  • Juan Valerio Cauich-RodríguezEmail author
  • José Luis Santiago-García


Two aromatic co-polyamides were synthesized combining two diacid monomers containing bulky pendant groups, 5-(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)isophthalic acid (DEAIA) and 5-tert-butylisophthalic acid (TERT), with 4,4′-(hexafluoroisopropylidene)dianiline (HFA) or 2,3,5,6-tetramethyl-1,4-phenylenediamine (Durene) by direct polycondensation. The structures of the obtained aromatic co-polyamides were confirmed by FTIR, Raman and 1H-NMR. The co-copolyamide films, DHTH and DDTD, exhibited rms-roughness values between 0.94 and 1.60 nm, respectively. Moreover, they presented good thermal stability up to 300 °C. Young’s moduli of the co-polyamide films were between 4.1 and 4.3 GPa. X-ray diffraction results showed that the co-polyamide films were amorphous due to the incorporation of both bulky pendant groups, tert-butyl and dibenzobarrelene. The combination of bulky pendant groups provided intrinsically transparent co-polyamide films with a transmittance higher than 88% in the range of 400−780 nm. Due to these outstanding film and optical properties, they are suggested to be flexible substrates in applications for solar cell and other portable electronic devices.


Co-polyamides Flexible films Transmittance Thermal stability Polycondensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thankfully acknowledge the financial support from CONACYT-México (No. 248378). J. A. Tec-Sánchez thanks CONACYT-México for the fellowship 427467. This work was partially supported by the project “Fortalecimiento e internacionalización del doctorado en ciencias (Materiales Poliméricos) del CICY” FOMIX YUC 2014-C17-247046. The authors thank LANNBIO Cinvestav-Merida for the NMR measurements.

Supplementary material

10118_2019_2190_MOESM1_ESM.pdf (157 kb)
Preparation and characterization of flexible, transparent and thermally stable aromatic co-polyamides


  1. 1.
    Ismail, A.; Abdullah, M. J. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J. King. Saud. Univ. Sci. 2013, 25, 209–215.CrossRefGoogle Scholar
  2. 2.
    Wang, Q.; Xie, Y.; Soltani–kordshuli, F.; Eslamian, M. Progress in emerging solution–processed thin film solar cells–Part I: Polymer solar cells. Renew. Sustain. Energy Re. 2016, 56, 347–361.CrossRefGoogle Scholar
  3. 3.
    Krebs, F. C. in Polymeric solar cells: Materials, design, manufacture, DEStech Publications, Inc., Pennsylvania, 2010, p. 15.Google Scholar
  4. 4.
    Sibinski, M.; Znajdek, K. in Innovative elastic thin–film solar cell structures, InTech, Rijeka, 2011, p. 253–274.Google Scholar
  5. 5.
    Ni, H.; Liu, J.; Wang, Z.; Yang, S. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. J. Ind. Eng. Chem. 2015, 28, 16–27.CrossRefGoogle Scholar
  6. 6.
    Santiago–García, J. L.; Pérez–Francisco J. M.; Zolotukhin, M. G.; Vázquez–Torres, H.; Aguilar–Vega, M.; González–Díaz, M.O. Gas transport properties of novel aromatic poly–and copolyamides bearing bulky functional groups. J. Membr. Sci. 2017, 522, 333–342.CrossRefGoogle Scholar
  7. 7.
    Meng, S.; Sun, N.; Su, K. Optically transparent polyamides bearing phenoxyl, diphenylamine and fluorene units with highcontrast of electrochromic and electrofluorescent behaviors. Polymer 2017,116, 89–98.CrossRefGoogle Scholar
  8. 8.
    Garcia, J. M.; Garcia, F. C.; Serna, F.; de la Pena, J. L. Highperformance aromatic polyamides. Prog. Polym. Sci. 2010, 35, 623–686.CrossRefGoogle Scholar
  9. 9.
    Liaw, D. J.; Chen, W. H.; Hu, C. K.; Lee, K. R.; Lai, J. Y. High optical transparency, low dielectric constant and light color of novel organosoluble polyamides with bulky alicyclic pendent group. Polymer 2007, 48, 6571–6580.CrossRefGoogle Scholar
  10. 10.
    Kim, Y.; Chang, J. Colorless and transparent polyimide nanocomposites: Thermo–optical properties, morphology, and gas permeation. Macromol. Res. 2013, 21, 228–233.CrossRefGoogle Scholar
  11. 11.
    Huang, W.; Yin, J. Synthesis, photophysical properties, and electron paramagnetic resonance studies of new poly(bisbenzothiazole) s containing bulky pendant groups. Polym. Eng. Sci. 2007, 47, 429–438.CrossRefGoogle Scholar
  12. 12.
    De Abajo, J.; de la Campa, J. G. Processable aromatic polyimides. Ad. Polym. Sci. 1999, 140, 23–59.CrossRefGoogle Scholar
  13. 13.
    Santiago–García, J. L.; Pérez–Francisco, J. M.; Loría–Bastarrachea, M. I.; Aguilar–Vega, M. Synthesis and characterization of novel polyamides containing dibenzobarrelene pendant groups. Des. Monomers Polym. 2015, 18, 350–359.CrossRefGoogle Scholar
  14. 14.
    Yamazaki, N.; Higashi, F.; Matsumoto, M. Studies on reactions of the N–phosphonium salts of pyridines XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Chem. 1975, 13, 1373–1380.Google Scholar
  15. 15.
    Huerta, E.; Corona, J.; Oliva, A. I. Universal testing machine for mechanical properties of thin materials. Re. Mex. Fis. 2010, 56, 317–322.Google Scholar
  16. 16.
    Bera, D.; Dasgupta, B.; Chatterjee, S.; Maji, S.; Banerjee, S. Synthesis, characterization, and properties of semifluorinated organo–soluble new aromatic polyamides. Polym. Adv. Technol. 2012, 23, 77–84.CrossRefGoogle Scholar
  17. 17.
    Mittal, V. in High performance polymers and engineering plastics, Scrivener Publishing LLC, Massachusetts, 2011, p. 1–20.Google Scholar
  18. 18.
    Johannes, K. F. in High performance polymers, William Andrew, New York, 2014, p. 321–341.Google Scholar
  19. 19.
    Ando, S.; Matsuura, T.; Sasaki, S. Coloration of aromatic polyimides and electronic properties of their source materials. Polym. J. 1997, 29, 69–76.CrossRefGoogle Scholar
  20. 20.
    Yi, L.; Li, C.; Huang, W.; Yan, D. Soluble and transparent polyimides with high Tg from a new diamine containing tertbutyl and fluorene units. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 976–984.CrossRefGoogle Scholar
  21. 21.
    Ge, Z.; Yang, S.; Tao, Z.; Liu, J.; Fan, L. Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides and aromatic diamines. Polymer 2004, 45, 3627–3635.CrossRefGoogle Scholar
  22. 22.
    Javadi, A.; Shockravi, A.; Koohgard, M.; Malek, A.; Shourkaei, F. A.; Ando, S. Nitro–substituted polyamides: A new class of transparent and highly refractive materials. Eur. Polym. J. 2015, 66, 328–341.CrossRefGoogle Scholar
  23. 23.
    Liaw, D. J.; Huang, C. C.; Chen, W. H. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2′–dimethyl–4,4′–biphenylene units. Polymer 2006, 47, 2337–2348.CrossRefGoogle Scholar
  24. 24.
    Bera, D.; Bandyopadhyay, P.; Ghosh, S.; Banerjee, S. Gas transport properties of aromatic polyamides containing adamantyl moiety. J. Membr. Sci. 2014, 453, 175–191.CrossRefGoogle Scholar
  25. 25.
    Hsiao, S. H.; Yang, C. P.; Tsai, C. Y.; Liou, G. S. A novel class of organosoluble and light–colored fluorinated polyamides derived from 2,2′–bis(4–amino–2–trifluoromethylphenoxy) biphenyl or 2,2′–bis(4–amino–2–trifluoromethylphenoxy)–1,1′–binaphthyl. Eur. Polym. J. 2004, 40, 1081–1094.CrossRefGoogle Scholar
  26. 26.
    Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José Antonio Tec-Sánchez
    • 1
  • Andrés Iván Oliva Arias
    • 2
  • Manuel Aguilar-Vega
    • 1
  • Juan Valerio Cauich-Rodríguez
    • 1
    Email author
  • José Luis Santiago-García
    • 1
  1. 1.Unidad de MaterialesCentro de Investigación Científica de Yucatán A. C.Mérida, YucatánMéxico
  2. 2.Centro de Investigación y de Estudios Avanzados del IPNUnidad Mérida, Departamento de Física AplicadaMérida YucatánMéxico

Personalised recommendations