Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 18–27 | Cite as

Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells

  • Xiao-Cheng Liu
  • Qing-Wu Yin
  • Zhi-Cheng Hu
  • Zhen-Feng Wang
  • Fei HuangEmail author
  • Yong Cao


We present here a series of perylene diimide (PDI) based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells (all-PSCs). By copolymerizing PDI monomers with 1,4-diethynylbenzene (para-linkage) and 1,3- diethynylbenzene (meta-linkage), isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained. It was found that para-linked conjugated polymer (PA) showed better solubility, stronger π-π stacking, more favorable blend morphology, and better photovoltaic performance than those of meta-linked conjugated polymers (PM) did. Device based on PTB7-Th:PA (PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)- carbonyl]thieno[3,4-b]thiophene-4,6-diyl}) showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA (3.29% versus 0.92%). Moreover, the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy. By copolymerizing a small amount of meta-linkages into PA, the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density (Jsc) and fill factor (FF), resulting in an improved power conversion efficiency (PCE) of 4.03%.


Isomeric conjugated polymers All-polymer solar cells Electron acceptors Perylene diimide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Ministry of Science and Technology of China (No. 2014CB643501), the National Natural Science Foundation of China (Nos. 21634004 and 51403070), and the Foundation of Guangzhou Science and Technology Project (No. 201707020019). Zhi-Cheng Hu thanks the financial support from China Postdoctoral Science Foundation (No. 2017M622684).

Supplementary material

10118_2019_2188_MOESM1_ESM.pdf (934 kb)
Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells


  1. 1.
    Kim, T.; Kim, J. H.; Kang, T. E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B.; Jeong, U.; Kim, T. S.; Kim, B. J. Flexible, highly efficient all–polymer solar cells. Nat. Commun. 2015, 6, 8547.CrossRefGoogle Scholar
  2. 2.
    Diao, Y.; Zhou, Y.; Kurosawa, T.; Shaw, L.; Wang, C.; Park, S.; Guo, Y.; Reinspach, J. A.; Gu, K.; Gu, X.; Tee, B. C. K.; Pang, C.; Yan, H.; Zhao, D.; Toney, M. F.; Mannsfeld, S. C. B.; Bao, Z. Flow–enhanced solution printing of all–polymer solar cells. Nat. Commun. 2015, 6, 7955.CrossRefGoogle Scholar
  3. 3.
    Zhao, R.; Dou, C.; Xie, Z.; Liu, J.; Wang, L. Polymer acceptor based on B—N units with enhanced electron mobility for efficient all–polymer solar cells. Ange w. Chem. Int. Ed. 2016, 55, 5313–5317.CrossRefGoogle Scholar
  4. 4.
    Zhou, N.; Dudnik, A. S.; Li, T. I. N.; Manley, G. E. F.; Aldrich, T. J.; Guo, P.; Liao, H. C.; Chen, Z.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Cruz, M. O.; Marks, T. J. All–polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers. J. Am. Chem. Soc. 2016, 138, 1240–1251.CrossRefGoogle Scholar
  5. 5.
    Li, Y.; Yang, Y.; Bao, X.; Qiu, M.; Liu, Z.; Wang, N.; Zhang, G.; Yang, R.; Zhang, D. New n–conjugated polymers as acceptors designed for all polymer solar cells based on imide/amidederivatives. J. Mater. Chem. C 2016, 4, 185–192.CrossRefGoogle Scholar
  6. 6.
    Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhang, G.; Ade, H.; Yan, H.; Zhao, D. Side–chain engineering of perylenediimidevinylene polymer acceptors for high–performance all–polymer solar cells. Mater. Chem. Front 2017, 1, 1362–1398.CrossRefGoogle Scholar
  7. 7.
    Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low–bandgap polymer acceptor for high–performance all–polymer solar cells. Angew. Chem. Int. Ed. 2017, 56,13688–13692.CrossRefGoogle Scholar
  8. 8.
    Dai, S.; Huang, S.; Yu, H.; Ling, Q.; Zhan, X. Perylene and naphthalene diimide copolymers for all–polymer solar cells: Effect of perylene/naphthalene ratio. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 682–689.CrossRefGoogle Scholar
  9. 9.
    Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y. High–performance thick–film allpolymer solar cells created via ternary blending of a novel wide–bandgap electron–donating copolymer. Adv. Energy Mater. 2018, 8, 1703085.CrossRefGoogle Scholar
  10. 10.
    Yuan, J.; Ford, M. J.; Xu, Y.; Zhang, Y.; Bazan, G. C.; Ma, W. Improved tandem all–polymer solar cells performance by using spectrally matched subcells. Adv. Energy Mater. 2018, 8, 1703291.CrossRefGoogle Scholar
  11. 11.
    Yin, Y.; Yang, J.; Guo, F.; Zhou, E.; Zhao, L.; Zhang, Y. Highperformance all–polymer solar cells achieved by fused perylenediimide–based conjugated polymer acceptors. ACS Appl. Mater. Interfaces 2018, 10, 15962–15970.CrossRefGoogle Scholar
  12. 12.
    Zhou, Y.; Yan, Q.; Zheng, Y. Q.; Wang, J. Y.; Zhao, D.; Pei, J. New polymer acceptors for organic solar cells: The effect of regio–regularity and device configuration. J. Mater. Chem. A 2013,1, 6609–6613.Google Scholar
  13. 13.
    Hu, Z.; Ying, L.; Huang, F.; Cao, Y. Towards a bright future: Polymer solar cells with power conversion efficiencies over 10%. Sci. China Chem. 2017, 60, 571–582.CrossRefGoogle Scholar
  14. 14.
    Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene–polymer to all–polymer solar cells: The importance of molecular packing, orientation and morphology control Acc. Chem. Res. 2016, 49, 2424–2434.CrossRefGoogle Scholar
  15. 15.
    Jung, J.; Lee, W.; Lee, C.; Ahn, H.; Kim, B. J. Controlling molecular orientation of naphthalenediimide–based polymer acceptors for high performance all–polymer solar cells. Adv. Energy Mater. 2016, 6, 1600504.CrossRefGoogle Scholar
  16. 16.
    Zhou, N.; Lin, H.; Lou, S. J.; Yu, X.; Guo, P.; Manley, E. F.; Loser, S.; Hartnett, P.; Huang, H.; Wasielewski, M. R.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. Morphologyperformance relationships in high–efficiency all–polymer solar cells. Adv. Energy Mater. 2014, 4, 1300785.CrossRefGoogle Scholar
  17. 17.
    Mu, C.; Liu, P.; Ma, W.; Jiang, K.; Zhao, J.; Zhang, K.; Chen, Z.; Wei, Z.; Yi, Y.; Wang, J.; Yang, S.; Huang, F.; Facchetti, A.; Ade, H.; Yan, H. High–efficiency all–polymer solar cells based on a pair of crystalline low–bandgap polymers. Adv. Mater. 2014, 26, 7224–7230.CrossRefGoogle Scholar
  18. 18.
    Choi, J.; Kim, K. H.; Yu, H.; Lee, C.; Kang, H.; Song, I.; Kim, Y.; Oh, J. H.; Kim, B. J. Importance of electron transport ability in naphthalene diimide–based polymer acceptors for highperformance, additive–free, all–polymer solar cells. Chem. Mater. 2015, 27, 5230–5237.CrossRefGoogle Scholar
  19. 19.
    Ye, L.; Jiao, X.; Zhao, W.; Zhang, S.; Yao, H.; Li, S.; Ade, H.; Hou, J. Manipulation of domain purity and orientational ordering in high performance all–polymer solar cells. Chem. Mater. 2016, 28, 6178–6185.CrossRefGoogle Scholar
  20. 20.
    Hwang, Y. J.; Earmme, T.; Courtright, B. A. E.; Eberle, F. N.; Jenekhe, S. A. N–Type semiconducting naphthalene diimideperylene diimide copolymers: Controlling crystallinity, blend morphology, and compatibility toward high–performance allpolymer solar cells. J. Am. Chem. Soc.2015, 137, 4424–4434.CrossRefGoogle Scholar
  21. 21.
    Suranagi, S. R.; Singh, R.; Kim, J. H.; Kim, M.; Ade, H.; Cho, K. Molecular engineering of perylene–diimide–based polymer acceptors containing heteroacene units for all–polymer solar cells. Org. Electron. 2018, 58, 222–230.CrossRefGoogle Scholar
  22. 22.
    Dai, S.; Cheng, P.; Lin, Y.; Wang, Y.; Ma, L.; Ling, Q.; Zhan, X. Perylene and naphthalene diimide polymers for all–polymer solar cells: A comparative study of chemical copolymerization and physical blend. Polym. Chem. 2015, 6, 5254–5263.CrossRefGoogle Scholar
  23. 23.
    Yang, J.; Chen, F.; Xiao, B.; Sun, S.; Sun, X.; Tajima, K.; Tang, A.; Zhou, E. Modulating the symmetry of benzodithiophene by molecular tailoring for the application in naphthalene diimide–based n–type photovoltaic polymers. Sol. RRL 2018, 2, 1700230.CrossRefGoogle Scholar
  24. 24.
    Jung, I. H.; Zhao, D.; Jang, J.; Chen, W.; Landry, E. S.; Lu, L.; Talapin, D. V.; Yu, L. Development and structure/property relationship of new electron accepting polymers based on thieno [2′,3′:4,5] pyrido [2,3–g] thieno [3,2–c] quinoline–4,10–dione for all–polymer solar cells. Chem. Mater. 2015, 27, 5941–5948.CrossRefGoogle Scholar
  25. 25.
    Cheng, P.; Lin, Y.; Zawacka, N. K.; Andersen, T. R.; Liu, W.; Bundgaard, E.; Jorgensen, M.; Chen, H.; Krebs, F. C.; Zhan, X. Comparison of additive amount used in spin–coated and rollcoated organic solar cells. J. Mater. Chem. A 2014, 2, 19542–19549.CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.; Wan, Q.; Guo, X.; Li, W.; Guo, B.; Zhang, M.; Li, Y. Synthesis and photovoltaic properties of an n–type two–dimension–conjugated polymer based on perylene diimide and benzodithiophene with thiophene conjugated side chains. J. Mater. Chem. A 2015, 3,18442–18449.Google Scholar
  27. 27.
    Zhou, W.; Zhang, Z. G.; Ma, L.; Li, Y.; Zhan, X. Dithienocoronene diimide based conjugated polymers as electron acceptors for all–polymer solar cells. Sol. Energy Mater. Sol. Cells 2013, 112, 13–19.CrossRefGoogle Scholar
  28. 28.
    Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. A high–mobility electron–transporting polymer for printed transistors. Nature 2009, 457, 679.CrossRefGoogle Scholar
  29. 29.
    Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All–polymer solar cells based on absorption–complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884–1890.CrossRefGoogle Scholar
  30. 30.
    Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. All–polymer solar cells based on a conjugated polymer containing siloxane–functionalized side chains with efficiency over 10%. Adv. Mater. 2017, 29, 1703906.CrossRefGoogle Scholar
  31. 31.
    Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. A high–mobility electron–transport polymer with broad absorption and its use in field–effect transistors and all–polymer solar cells. J. Am. Chem. Soc. 2007,129, 7246–7247.Google Scholar
  32. 32.
    Zhou, Y.; Kurosawa, T.; Ma, W.; Guo, Y.; Fang, L.; Vandewal, K.; Diao, Y.; Wang, C.; Yan, Q.; Reinspach, J.; Mei, J.; Appleton, A. L.; Koleilat, G. I.; Gao, Y.; Mannsfeld, S. C. B.; Salleo, A.; Ade, H.; Zhao, D.; Bao, Z. High performance allpolymer solar cell via polymer side–chain engineering. Adv. Mater. 2014, 26, 37673772.Google Scholar
  33. 33.
    Li, S.; Zhang, H.; Zhao, W.; Ye, L.; Yao, H.; Yang, B.; Zhang, S.; Hou, J. Green–solvent–processed all–polymer solar cells containing a perylene diimide–based acceptor with an efficiency over 6.5%. Ad v. Energy Mater. 2016, 6, 1501991.CrossRefGoogle Scholar
  34. 34.
    Guo, Y.; Li, Y.; Awartani, O.; Zhao, J.; Han, H.; Ade, H.; Zhao, D.; Yan, H. A vinylene–bridged perylenediimide–based polymeric acceptor enabling efficient all–polymer solar cells processed under ambient conditions. Adv. Mater. 2016, 28, 8483–8489.CrossRefGoogle Scholar
  35. 35.
    Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D. Improved performance of all–polymer solar cells enabled by naphthodiperylenetetraimide–based polymer acceptor. Ad. Mater. 2017, 1700309.Google Scholar
  36. 36.
    Lee, W.; Lee, C.; Yu, H.; Kim, D. J.; Wang, C.; Woo, H. Y.; Oh, J. H.; Kim, B. J. Side chain optimization of naphthalene diimide–bithiophene–based polymers to enhance the electron mobility and the performance in all–polymer solar cells. Adv. Funct. Mater. 2016, 26, 1543–1553.CrossRefGoogle Scholar
  37. 37.
    Shi, S.; Yuan, J.; Ding, G.; Ford, M.; Lu, K.; Shi, G.; Sun, J.; Ling, X.; Li, Y.; Ma, W. Improved all–polymer solar cell performance by using matched polymer acceptor. Adv. Funct. Mater. 2016, 26, 5669–5678.CrossRefGoogle Scholar
  38. 38.
    Ye, L.; Jiao, X.; Zhang, H.; Li, S.; Yao, H.; Ade, H.; Hou, J. 2D–conjugated benzodithiophene–based polymer acceptor: Design, synthesis, nanomorphology, and photovoltaic performance. Macromolecules 2015, 48, 7156–7163.CrossRefGoogle Scholar
  39. 39.
    Hwang, Y. J; Courtright, B. A. E.; Ferreira, A. S.; Tolbert, S. H.; Jenekhe, S. A. 7.7% efficient all–polymer solar cells. Adv. Mater. 2015, 21, 4578–4584.CrossRefGoogle Scholar
  40. 40.
    Ye, L.; Jiao, X.; Zhang, H.; Li, S.; Yao, H.; Ade, H.; Hou, J. 2D–conjugated benzodithiophene–based polymer acceptor: Design, synthesis, nanomorphology, and photovoltaic performance. Macromolecules 2015, 48, 7156–7163.CrossRefGoogle Scholar
  41. 41.
    Chang, H.; Chen, Z.; Yang, X.; Yin, Q.; Zhang, J.; Ying, L.; Jiang, X. F.; Xu, B.; Huang, F.; Cao, Y. Novel perylene diimide based polymeric electron–acceptors containing ethynyl as the nbridge for all–polymer solar cells. Org. Electron. 2017, 45, 227–233.CrossRefGoogle Scholar
  42. 42.
    Xiong, W.; Meng, X.; Liu, T.; Cai, Y.; Xue, X.; Li, Z.; Sun, X.; Huo, L.; Ma, W.; Sun, Y. Rational design of perylenediimidebased polymer acceptor for efficient all–polymer solar cells. Org. Electron. 2017, 50, 376–383.CrossRefGoogle Scholar
  43. 43.
    Chen, D.; Yao, J.; Chen, L.; Yin, J.; Lv, R.; Huang, B.; Liu, S.; Zhang, Z. G.; Yang, C.; Chen Y.; Li, Y. Dye–incorporated polynaphthalenediimide acceptor for additive–free high–performance all–polymer solar cells. A ge w. Chem. Int. Ed. 2018, 51, 4580–4584.CrossRefGoogle Scholar
  44. 44.
    Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Ma, W.; Yartsev, A.; Inganäs, O.; Andersson, M. R.; Janssen, R. A. J.; Wang, E. High performance all–polymer solar cells by synergistic effects of fine–tuned crystallinity and solvent annealing. J. Am. Chem. Soc. 2016, 138, 10935–10944.CrossRefGoogle Scholar
  45. 45.
    Huo, L.; Xue, X.; Liu, T.; Xiong, W.; Qi, F.; Fan, B.; Xie, D.; Liu, F.; Yang, C.; Sun, Y. Subtle side–chain engineering of random terpolymers for high performance organic solar cells. Chem. Mater. 2018, 30, 3294–3300.CrossRefGoogle Scholar
  46. 46.
    Sharma, S.; Kolhe, N. B.; Gupta, V.; Bharti, V.; Sharma, A.; Datt, R.; Chand, S.; Asha, S. K. Improved all–polymer solar cell performance of n–type naphthalene diimide–bithiophene P (NDI2OD–T2) copolymer by incorporation of perylene diimide as coacceptor. Macromolecules 2016, 49, 8113–8125.CrossRefGoogle Scholar
  47. 47.
    Li, X.; Sun, P.; Wang, Y.; Shan, H.; Xu, J.; Song, X.; Xu, Z.; Chen, Z. K. A random copolymer approach to develop nonfullerene acceptors for all–polymer solar cells. J. Mater. Chem. C 2016, 4, 2106–2110.CrossRefGoogle Scholar
  48. 48.
    Cheng, P.; Zhao, X.; Zhou, W.; Hou, J.; Li Y.; Zhan, X. Towards high–efficiency non–fullerene organic solar cells: Matching small molecule/polymer donor/acceptor. Org. Electron. 2014,15, 2270–2276.Google Scholar
  49. 49.
    Chen, Y.; Tang, A.; Zhang, X.; Lu, Z.; Huang, J.; Zhan, C.; Yao, J. A new solution–processed diketopyrrolopyrrole donor for non–fullerene small–molecule solar cells. J. Mater. Chem. A 2014, 2, 1869–1876.CrossRefGoogle Scholar
  50. 50.
    Lu, Z.; Jiang, B.; Zhang, X.; Tang, A.; Chen, L.; Zhan, C.; Yao, J. Perylene–diimide based non–fullerene solar cells with 4.34% efficiency through engineering surface donor/acceptor compositions. Chem. Mater. 2014, 26, 2907–2914.CrossRefGoogle Scholar
  51. 51.
    Liu, Z.; Wu, Y.; Zhang, Q.; Gao, X. Non–fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 2016, 4, 17604–17622.CrossRefGoogle Scholar
  52. 52.
    Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z. Three–bladed rylene propellers with three–dimensional network assembly for organic electronics. J. Am. Chem. Soc. 2016, 138, 10184–10190.CrossRefGoogle Scholar
  53. 53.
    Wan, J.; Xu, X.; Zhang, G.; Li, Y.; Feng, K.; Peng, Q. Highly efficient halogen–free solvent processed small–molecule organic solar cells enabled by material design and device engineering. Energy Environ. Sci. 2017,10, 1739–1745.Google Scholar
  54. 54.
    Ma, J.; Yin, L.; Zou, G.; Zhang, Q. Regioisomerically pure 1,7–dibromo–substituted perylene bisimide dyes: Efficient synthesis, separation, and characterization. Eur. J. Org. Chem. 2015, 15, 32963302.Google Scholar
  55. 55.
    Tanimoto, H.; Mori, J.; Ito, S.; Nishiyama, Y.; Morimoto, T.; Tanaka, K.; Chujo, Y.; Kakiuchi, K. From molecular to macroscopic engineering: Shaping hydrogen–bonded organic nanomaterials. Chem. Eur. J. 2017, 23, 10080–10092.CrossRefGoogle Scholar
  56. 56.
    Hahm, S. G.; Rho, Y.; Jung, J.; Kim, S. H.; Sajoto, T.; Kim, F. S.; Barlow, S.; Park, C. E.; Jenekhe, S. A.; Marder, S. R.; Ree, M. High–performance n–channel thin–film field–effect transistors based on a nanowire–forming polymer. Adv. Funct. Mater. 2013, 23, 2060–2071.CrossRefGoogle Scholar
  57. 57.
    Schäfer, J.; Holzapfel, M.; Mladenova, B.; Kattnig, D.; Krummenacher, I.; Braunschweig, H.; Grampp, G.; Lambert, C. Hole transfer processes in meta–and para–conjugated mixed valence compounds: Unforeseen effects of bridge substituents and solvent dynamics. J. Am. Chem. Soc. 2017, 139, 6200–6209.CrossRefGoogle Scholar
  58. 58.
    Nam, S.; Hahm, S. G.; Han, H.; Seo, J.; Kim, C.; Kim, H.; Marder, S. R.; Ree, M.; Kim, Y. Naphthalene diimide based ntype conjugated polymers as efficient cathode interfacial materials for polymer and perovskite solar cells. ACS Sustain. Chem. Eng. 2017, 9, 36070–36081.Google Scholar
  59. 59.
    Hu, Z.; Chen, Z.; Zhang, K.; Zheng, N.; Xie, R.; Liu, X.; Yang, X.; Huang, F.; Cao, Y. Self–doped n–type water/alcohol soluble–conjugated polymers with tailored backbones and polar groups for highly efficient polymer solar cells. Sol. RRL 2017, 1, 1700055.CrossRefGoogle Scholar
  60. 60.
    Brown, P. J.; Thomas, D. S.; Koler, A.; Wilson, J. S.; Kim, J. S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. Effect of interchain interactions on the absorption and emission of poly(3–hexylthiophene). Phys. Rev. B 2003, 61, 064203.CrossRefGoogle Scholar
  61. 61.
    Su, W.; Fan, Q.; Guo, X.; Chen, J.; Wang, Y.; Wang, X.; Dai, P.; Ye, C.; Bao, X.; Ma, W.; Zhang, M.; Li, Y. Significant enhancement of the photovoltaic performance of organic small molecule acceptors via side–chain engineering. J. Mater. Chem. A 2018, 6, 7988–7996.CrossRefGoogle Scholar
  62. 62.
    Feng, S.; Zhang, C.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Fused–ring acceptors with asymmetric side chains for high–performance thick–film organic solar cells. Adv. Mater. 2017, 29, 1703527.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-Cheng Liu
    • 1
  • Qing-Wu Yin
    • 1
  • Zhi-Cheng Hu
    • 1
    • 2
  • Zhen-Feng Wang
    • 1
  • Fei Huang
    • 1
    • 2
    Email author
  • Yong Cao
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.South China Institute of Collaborative InnovationDongguanChina

Personalised recommendations