Advertisement

Synthesis and Compressive Response of Microcellular Foams Fabricated from Thermally Expandable Microspheres

  • Rui-Zhi Zhang
  • Ju Chen
  • Mao-Wei Huang
  • Jian Zhang
  • Guo-Qiang Luo
  • Bao-Zhen Wang
  • Mei-Juan Li
  • Qiang Shen
  • Lian-Meng Zhang
Article
  • 16 Downloads

Abstract

Cellular foams are widely applied as protective and energy absorption materials in both civil and military fields. A facile and simple one-step heating method to fabricate polymeric foams is measured by adopting thermally expandable microspheres (TEMs). The ideal foaming parameters for various density foams were determined. Moreover, a mechanical testing machine and split Hopkinson bar (SHPB) were utilized to explore the quasi-static and dynamic compressive properties. Results showed that the cell sizes of the as-prepared TEMs foams were in the micrometer range of 11 μm to 20 μm with a uniform cell size distribution. All the foams exhibited good compressive behavior under both quasi-static and high strain rate conditions, and were related to both foam densities and strain rates. The compressive strength of the TEMs foams at 8400 s−1 was up to 4 times higher than that at 10−4 s−1. The effects exerted by the strain rate and sample density were evaluated by a power law equation. With increasing density, the strain rate effect was more prominent. At quasistatic strain rates below 3000 s−1 regime, initial cell wall buckling and subsequent cellular structure flattening were the main failure mechanisms. However, in the high strain rate (HSR) regime (above 5000 s−1), the foams were split into pieces by the following transverse inertia force.

Keywords

Thermally expandable microspheres Compressive response Split Hopkinson bar (SHPB) Microcellular Failure mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51572208 and 51521001), the National Key R&D Program of China (No. 2018YFB0905600), the 111 Project (No. B13035), the China Postdoctoral Science Foundation (No. 2018M632935), and the Nature Science Foundation of Hubei Province (No. 2016CFA006).

References

  1. 1.
    Gibson, L. J.; Ashby, M. F. in Cellular solids: structure and properties. Cambridge university press: 1999.Google Scholar
  2. 2.
    Eaves, D. in Handbook of Polymer Foams. Natl Book Network 2004.Google Scholar
  3. 3.
    Landro, L. D.; Sala, G.; Olivieri, D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym. Test. 2002, 21, 217–228.CrossRefGoogle Scholar
  4. 4.
    Lee, S. T.; Ramesh, N. S. Polymeric Foams: Mechanisms and Materials. IEEE Electrical Insulation Magazine 2004, 21, 56–56.Google Scholar
  5. 5.
    Bao, J. B.; Junior, A. N.; Weng, G. S.; Wang, J.; Fang, Y. W.; Hu, G. H. Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J. Supercrit. Fluids 2016, 111, 63–73.CrossRefGoogle Scholar
  6. 6.
    Castiglioni, A.; Castellani, L.; Cuder, G.; Comba, S. Relevant materials parameters in cushioning for EPS foams. Colloid. Surface. A 2017, 534, 71–77.CrossRefGoogle Scholar
  7. 7.
    Zhang, R.; Zhang, L.; Zhang, J.; Luo, G.; Xiao, D.; Song, Z.; Li, M.; Xiong, Y.; Shen, Q. Compressive response of PMMA microcellular foams at low and high strain rates. J. Appl. Polym. Sci. 2018,135, 46044.Google Scholar
  8. 8.
    Sun, X.; Kharbas, H.; Peng, J.; Turng, L. S. A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer 2015, 50, 102–110.Google Scholar
  9. 9.
    Sun, J. C.; Xu, J. K.; He, Z. L.; Ren, H. Y.; Wang, Y. Q.; Zhang, L.; Bao, J. B. Role of nano silica in supercritical CO2 foaming of thermoplastic poly(vinyl alcohol) and its effect on cell structure and mechanical properties. Eur. Polym. J. 2018, 105, 491–499.CrossRefGoogle Scholar
  10. 10.
    Wang, J.; Zhang, L.; Bao, J. B. Supercritical CO2 Assisted preparationof open–cell foams of linear low–density polyethylene and linear low–density polyethylene/carbon nanotube composites. Chinese J. Polym. Sci. 2016, 34, 889–900.CrossRefGoogle Scholar
  11. 11.
    Andersson, H.; Griss, P.; Stemme, G. Expandable microspheres–surface immobilization techniques. Sensors Actuators B: Chem. 2002, 84, 290–295.CrossRefGoogle Scholar
  12. 12.
    Morehouse, D. S.; Tetreault, R. J. Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same. 1971, US Patent 3615972.Google Scholar
  13. 13.
    Hou, Z. S.; Kan, C. Y. Preparation and properties of thermoexpandable polymeric microspheres. Chinese Chem. Lett. 2014, 25, 1279–1281.CrossRefGoogle Scholar
  14. 14.
    Liu, M. X.; Gan, L. H.; Xiong, W.; Zhu, D. Z.; Xu, Z. J.; Chen, L. W. Partially graphitic micro–and mesoporous carbon microspheres for supercapacitors. Chinese Chem. Lett. 2013, 24, 1037–1040.CrossRefGoogle Scholar
  15. 15.
    Chen, S. Y.; Sun, Z. C.; Li, L. H.; Xiao, Y. H.; Yu, Y. M. Preparation and characterization of conducting polymer–coated thermally expandable microspheres. Chinese Chem. Lett. 2017, 28, 658–662.CrossRefGoogle Scholar
  16. 16.
    Oleschuk, R. D.; Shultz–Lockyear, L. L.; Ning, Y.; Harrison, D. J. Trapping of bead–based reagents within microfluidic systems: On–chip solid–phase extraction and electrochromatography. Anal Chem. 2000, 72, 585–590.CrossRefPubMedGoogle Scholar
  17. 17.
    Andersson, H.; Ahmadian, A.; Wijngaart, W. V. D.; Nilsson, P.; Enoksson, P.; Uhlen, M.; Stemme, G. in Micromachined flow–through filter–chamber for solid phase DNA analysis. Springer: 2000, 473–476.Google Scholar
  18. 18.
    Lu, Y.; Broughton, J.; Winfield, P. Surface modification of thermally expandable microspheres for enhanced performance of disbondable adhesive. Int. J. Adhes. Adhes. 2016, 66, 33–40.CrossRefGoogle Scholar
  19. 19.
    Jonsson, M.; Nordin, O.; Malmström, E.; Hammer, C. Suspension polymerization of thermally expandable core/shell particles. Polymer 2006, 47, 3315–3324.CrossRefGoogle Scholar
  20. 20.
    Kawaguchi, Y.; Itamura, Y.; Onimura, K.; Oishi, T. Effects of the chemical structure on the heat resistance of thermoplastic expandable microspheres. J. Appl. Polym. Sci. 2005, 96, 1306–1312.CrossRefGoogle Scholar
  21. 21.
    Vamvounis, G.; Jonsson, M.; Malmström, E.; Hult, A. Synthesis and properties of poly(3–n–dodecylthiophene) modified thermally expandable microspheres. Eur. Polym. J. 2013, 49, 1503–1509.CrossRefGoogle Scholar
  22. 22.
    Zhou, S. Q.; Zhou, Z. F.; Ji, C. R.; Xu, W. B.; Ma, H. H.; Ren, F. M.; Wang, X. F. Formation mechanism of thermally expandable microspheres of PMMA encapsulating NaHCO3 and ethanol via thermally induced phase separation. RSC Adv. 2017, 7, 50603–50609.CrossRefGoogle Scholar
  23. 23.
    Shen, Q.; Xiong, Y. L.; Yuan, H.; Luo, G. Q.; Liang, X.; Zhang, L. M. The fabrication and characterization of polymeric microcellular foams with designed gradient density. J. Phys: Conf. Ser. 2013, 419, 012009.Google Scholar
  24. 24.
    Bouix, R.; Viot, P.; Lataillade, J. L. Polypropylene foam behaviour under dynamic loadings: Strain rate, density and microstructure effect. Int. J. Impact Eng. 2013, 36, 329–342.CrossRefGoogle Scholar
  25. 25.
    Ji, L. J.; Jiang, Y. S.; Liang, G.; Liu, Z. Q.; Zhu, J.; Huang, K.; Zhu, A. P. Thermally expandable microspheres of poly(acrylonitrile/ ethyl methacrylate/methacrylic acid) with fast thermal response property. Pigm. Resin Technol. 2017, 46, 115–121.CrossRefGoogle Scholar
  26. 26.
    Song, B.; Lu, W. Y.; Syn, C. J.; Chen, W. The effects of strain rate, density, and temperature on the mechanical properties of polymethylene diisocyanate (PMDI)–based rigid polyurethane foams during compression. J. Mater. Sci. 2008, 44, 351–357.CrossRefGoogle Scholar
  27. 27.
    Chen, W.; Lu, F.; Frew, D. J.; Forrestal, M. J. Dynamic compression testing of soft materials. J. Appl. Mech. 2002, 69, 214.CrossRefGoogle Scholar
  28. 28.
    Sharpe, W. N. in Springer handbook of experimental solid mechanics. Springer Science & Business Media: 2008.Google Scholar
  29. 29.
    Chen, W. W.; Song, B. in Split Hopkinson (Kolsky) Bar, Design Testing and Applications. Springer, New York, 2015.Google Scholar
  30. 30.
    Song, B. Dynamic stress equilibration in split hopkinson pressure bar tests on soft materials. Exp. Mech. 2004, 44, 300–312.CrossRefGoogle Scholar
  31. 31.
    Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. B 1949, 62, 676–700.CrossRefGoogle Scholar
  32. 32.
    Hay, J.; Pharr, G. ASM Handbook: Mechanical testing and evaluation. ASM Int. 2000, 8, 232.Google Scholar
  33. 33.
    Xiao, D.; Li, Y.; Hu, S. Study of small dimension specimens on SHPB test. AIP Conf. Proc. 2008, 955, 1151–1154.CrossRefGoogle Scholar
  34. 34.
    Luong, D. D.; Pinisetty, D.; Gupta, N. Compressive properties of closed–cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art. Compos. PartB: Eng. 2013, 44, 403–416.CrossRefGoogle Scholar
  35. 35.
    Kuhn, H.; Medlin, D. ASM Handbook. Volume 8: Mechanical Testing and Evaluation. ASM Int. 2000, 9982000.Google Scholar
  36. 36.
    Tagarielli, V.; Deshpande, V.; Fleck, N. The high strain rate response of PVC foams and end–grain balsa wood. Compos. Part B: Eng. 2008, 39, 83–91.CrossRefGoogle Scholar
  37. 37.
    Subhash, G.; Liu, Q.; Gao, X. L. Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams. Int. J. Impact Eng. 2006, 32, 1113–1126.CrossRefGoogle Scholar
  38. 38.
    Koohbor, B.; Mallon, S.; Kidane, A.; Lu, W. Y. The deformation and failure response of closed–cell PMDI foams subjected to dynamic impact loading. Polym. Test. 2015, 44, 112–124.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rui-Zhi Zhang
    • 1
  • Ju Chen
    • 1
  • Mao-Wei Huang
    • 1
  • Jian Zhang
    • 1
  • Guo-Qiang Luo
    • 1
  • Bao-Zhen Wang
    • 2
  • Mei-Juan Li
    • 3
  • Qiang Shen
    • 1
  • Lian-Meng Zhang
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.School of Civil and Hydraulic EngineeringHefei University of TechnologyHefeiChina
  3. 3.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanChina

Personalised recommendations