Chinese Journal of Polymer Science

, Volume 37, Issue 2, pp 189–196 | Cite as

Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids

  • Bo Yang
  • Shuang-Hong Zhang
  • Yi-Feng Zou
  • Wen-Shi Ma
  • Guo-Jia HuangEmail author
  • Mao-Dong Li


The SiO2 nanoparticles were coated on the surface of graphene oxide (GO) by sol-gel method to get the SiO2-G compound. The SiO2-G was restored and oleophylically modified to prepare hydrophobic modified SiO2-G (HM-SiO2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized (RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods. In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO2 nanoparticles were coated on graphene oxide successfully, and HM-SiO2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.


Graphene Modification Two components Room temperature vulcanized silicone rubber Thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Guangdong Province Science and Technology projects (Grant No. 2017A040402005) and Guangdong Bureau of Quality and Technical Supervision Science and Technology projects (Grant No. 2017CT30) for financial support of this work.


  1. 1.
    Zheng, Z. M.; Xu, C. H.; Jiang, J.; Ren, C. Y.; Gao, W.; Xie, Z. M. Hydrophobicity of contaminated silicone rubber surfaces. Chinese J. Polym. Sci. 2002, 20, 559–564.Google Scholar
  2. 2.
    Gan, T. F.; Shentu, B. Q.; Weng, Z. X. Modification of CeO2 and its effect on the heat–resistance of silicone rubber. Chinese J. Polym. Sci. 2008,113, 3202–3206.Google Scholar
  3. 3.
    Wang, J. B.; Li, Q. Y.; Wu, C. F.; Xu, H. Y. Thermal conductivity and mechanical properties of carbon black filled silicone rubber. Polym. Polym. Compos. 2014, 22, 393–400.Google Scholar
  4. 4.
    Jiang, M. J.; Dang, Z. M.; Xu, H. P. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite. Eur. Polym. J. 2007, 43, 4924–4930.CrossRefGoogle Scholar
  5. 5.
    Pradhan, B.; Srivastava, S. K. Synergistic effect of three–dimensional multi–walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high–performance silicone rubber. Polym. Int. 2014, á3, 1219–1228.Google Scholar
  6. 6.
    Gan, L.; Shang, S. M.; Yuen, C. W. M.; Jiang, S. X.; Luo, N. M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos. Part B Eng. 2015, 69,237–242.CrossRefGoogle Scholar
  7. 7.
    Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energ. Environ. Sci. 2014, 7, 1564–1596.CrossRefGoogle Scholar
  8. 8.
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Dubonos, S. V.; Grigorieva, V. I.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  9. 9.
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  10. 10.
    Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B.; Xin, M. L.; Li, S. P.; Yin, Z. J. Surface functional modification of graphene and graphene oxide. Acta Chimica Sinica (in Chinese) 2016, 74, 789–799.CrossRefGoogle Scholar
  11. 11.
    Yang, Y. K.; He, C. E.; Peng, R. G.; Baji, A.; Du, X. S.; Huang, Y. L.; Xie, X. L.; Mai, Y. W. Non–covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem. 2012, 22, 5666–5675.CrossRefGoogle Scholar
  12. 12.
    Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWiliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.CrossRefGoogle Scholar
  13. 13.
    Hu, H. T.; Wang, X. B.; Wang, J. C.; Liu, F. M.; Zhang, M.; Xu, C. H. Microwave–assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011, 257, 2637–2642.CrossRefGoogle Scholar
  14. 14.
    Vadukumpully, S.; Gupta, J.; Zhang, Y. P.; Xu, G. Q.; Valiyaveettil, S. Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 2011, 3, 303–308.CrossRefGoogle Scholar
  15. 15.
    Zhu, D. Y.; Xiao, Z. Y.; Liu, X. M. Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]–hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media. Int. J. Hydro. Energ. 2015, 40, 5081–5091.CrossRefGoogle Scholar
  16. 16.
    Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water–soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5864.CrossRefGoogle Scholar
  17. 17.
    Vallès, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M. S.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pènicaud, A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 2008,130, 15802–15804.CrossRefGoogle Scholar
  18. 18.
    Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1344.CrossRefGoogle Scholar
  19. 19.
    Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A facile route of making silica nanoparticles–covered graphene oxide nanohybrids (SiO2–GO); fabrication of SiO2–GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 2016, 303, 511–528.CrossRefGoogle Scholar
  20. 20.
    Kou, L.; Gao, C. Making silica nanoparticle–covered graphene oxide nanohybrids as general building blocks for large–area superhydrophilic coatings. Nanoscale 2011, 3, 519–528.CrossRefGoogle Scholar
  21. 21.
    Haeri, S. Z.; Ramezanzadeh, B.; Asghari, M. A novel fabrication of a high performance SiO2–graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2–GO nanohybrids. J. Colloid Inter. Sci. 2017, 493, 111–122.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bo Yang
    • 1
  • Shuang-Hong Zhang
    • 1
  • Yi-Feng Zou
    • 2
  • Wen-Shi Ma
    • 2
  • Guo-Jia Huang
    • 1
    Email author
  • Mao-Dong Li
    • 1
  1. 1.Guangzhou Special Pressure Equipment Inspection and Research InstituteGuangzhouChina
  2. 2.School of Materials Science and TechnologySouth China University of TechnologyGuangzhouChina

Personalised recommendations