Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 2, pp 149–156 | Cite as

Comparative Studies on Properties of Polymers with Bulky Side Groups Synthesized by Cyclopolymerization of α,ω-Dienes and α,ω-Diynes

  • Shao-Fei Song
  • Xiao-Yu Liu
  • Hao Zhang
  • Zhi-Sheng Fu
  • Jun-Ting Xu
  • Zhi-Qiang Fan
Article
  • 23 Downloads

Abstract

Four polymers containing five-membered rings in the main chain, with or without conjugation structure along the backbone and with or without conjugated pendent groups, were designed and synthesized by metathesis cyclopolymerization of functionalized α,ω-diynes, and cyclopolymerization of functionalized α,ω-dienes catalyzed by the α-diimine palladium-based catalyst, respectively. High to moderate monomer conversions were achieved. Chain structure, molecular weight, and molecular weight distribution (MWD) of the cyclopolymerization products were characterized by 1H-, 13C-NMR, FTIR, and GPC. The polymers showed regular main chain structures, moderately high molecular weight, and narrow MWD. Thermal properties and chain stacking behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) as well as atomic force microscopy (AFM). The polymer with conjugation system in both the backbone and the pendent groups exhibited UV-Vis absorption at a much longer wavelength than those with the conjugation only in the backbone or only in the side groups. The polymers with conjugated backbone need more space for chain stacking, and the conjugated backbone causes enhanced size of polymer particles assembled from solution. The results showed that primary microstructures of the polymer exerted significant influences on the physical properties.

Keywords

Cyclopolymerization α,ω-Diene α,ω-Diyne Conjugation system Properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2019_2183_MOESM1_ESM.pdf (1019 kb)
Comparative Studies on Properties of Polymers with Bulky Side Groups Synthesized by Cyclopolymerization of α,ω-Dienes and α,ω-Diynes

References

  1. 1.
    Boaen, N. K.; Hillmyer, M. A. Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 2005, 34, 267–275.CrossRefGoogle Scholar
  2. 2.
    Franssen, N. M. G.; Reek, J. N. H.; de Bruin, B. Synthesis of functional ‘polyolefins’: State of the art and remaining challenges. Chem. Soc. Rev. 2013, 42, 5809–5832.CrossRefGoogle Scholar
  3. 3.
    de Silva, L. C.; Rojas, G.; Schulz, M. D.; Wagener, K. B. Acyclic diene metathesis polymerization: History, methods and applications. Prog. Polym. Sci. 2017, 69, 79–107.CrossRefGoogle Scholar
  4. 4.
    Grubbs, R. H. Olefin metathesis. Tetrahedron 2004, 60, 7117–7140.CrossRefGoogle Scholar
  5. 5.
    Hillmyer, M. A.; Grubbs, R. H. Chain transfer in the ring-opening metathesis polymerization of cyclooctadiene using discrete metal alkylidenes. Macromolecules 1995, 28, 8662–8667.CrossRefGoogle Scholar
  6. 6.
    Hillmyer, M. A.; Nguyen, S. T.; Grubbs, R. H. Utility of a ruthenium metathesis catalyst for the preparation of end-functionalized polybutadiene. Macromolecules 1997, 30, 718–721.CrossRefGoogle Scholar
  7. 7.
    Sworen, J. C.; Smith, J. A.; Wagener, K. B.; Baugh, L. S.; Rucker, S. P. Modeling random methyl branching in ethylene/propylene copolymers using metathesis chemistry: Synthesis and thermal behavior. J. Am. Chem. Soc. 2003, 125, 2228–2240.CrossRefGoogle Scholar
  8. 8.
    Xie, M.; Han, H.; Jin, O.; Du, C. Synthesis of ionic hybrid polymers with polyhedral oligomeric silsesquioxane pendant by acyclic diene metathesis polymerization and characterization. Acta Chim. Sin. 2013, 71, 1441–1445.CrossRefGoogle Scholar
  9. 9.
    Song, W.; Wu, J.; Yang, G.; Han, H.; Xie, M.; Liao, X. Precisely designed perylene bisimide-substituted polyethylene with a high glass transition temperature and an ordered architecture. RSC Adv. 2015, 5, 68765–68772.CrossRefGoogle Scholar
  10. 10.
    Ding, L.; Yang, G.; Xie, M.; Gao, D.; Yu, J.; Zhang, Y. More insight into tandem ROMP and ADMET polymerization for yielding reactive long-chain highly branched polymers and their transformation to functional polymer nanoparticles. Polymer 2012, 53, 333–341.CrossRefGoogle Scholar
  11. 11.
    Li, Z. L.; Lv, A.; Li, L.; Deng, X. X.; Zhang, L. J.; Du, F. S.; Li, Z. C. Periodic ethylene-vinyl alcohol copolymers via ADMET polymerization: Synthesis, characterization, and thermal property. Polymer 2013, 54, 3841–3849.CrossRefGoogle Scholar
  12. 12.
    Song, S. F.; Guo, W. Q.; Zou, S. F.; Fu, Z. S.; Xu, J. T.; Fan, Z. Q. Polyethylene containing aliphatic ring and aromatic ring defects in the main chain: Synthesis via ADMET and comparisons of thermal properties and crystalline structure. Polymer 2016, 107, 113–121.CrossRefGoogle Scholar
  13. 13.
    Song, S. F.; He, F.; Fu, Z. S.; Xu, J. T.; Fan, Z. Q. Precision ADMET polyolefins containing dithiane: Synthesis, thermal properties and macromolecular transformation. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2468–2475.CrossRefGoogle Scholar
  14. 14.
    Teo, Y. C.; Xia, Y. Importance of macromonomer quality in the ring-opening metathesis polymerization of macromonomers. Macromolecules 2015, 48, 5656–5662.CrossRefGoogle Scholar
  15. 15.
    Zou, L.; Long, M.; Zhou, H.; Zhu, W.; Zhang, K.; Chen, Y.; Xi, F. C(sp3)-C(sp3) coupling polymerization of alkyl dibromides for preparation of polymers with precisely located phenyl pendants. Polymer 2015, 64, 196–201.CrossRefGoogle Scholar
  16. 16.
    Mayershofer, M. G.; Nuyken, O.; Buchmeiser, M. R. Bi- and trinuclear ruthenium alkylidene triggered cyclopolymerization of 1,6-heptadiynes: Access to An-X-An block and (An)3X tristar copolymers. Macromolecules 2006, 39, 3484–3493.CrossRefGoogle Scholar
  17. 17.
    Vygodskii, Y. S.; Shaplov, A. S.; Lozinskaya, E. I.; Vlasov, P. S.; Malyshkina, I. A.; Gavrilova, N. D.; Kumar, P. S.; Buchmeiser, M. R. Cyclopolymerization of N,N-dipropargylamines and N,N-dipropargyl ammonium salts. Macromolecules 2008, 41, 1919–1928.CrossRefGoogle Scholar
  18. 18.
    Santhosh, P.; Wurst, K.; Buchmeiser, M. R. Factors relevant for the regioselective cyclopolymerization of 1,6-heptadiynes, N,Ndipropargylamines, N,N-dipropargylammonium salts, and dipropargyl ethers by RuIV-alkylidene-based metathesis initiators. J. Am. Chem. Soc. 2009, 131, 387–395.CrossRefGoogle Scholar
  19. 19.
    Kang, E. H.; Lee, I. S.; Choi, T. L. Ultrafast cyclopolymerization for polyene synthesis: Living polymerization to dendronized polymers. J. Am. Chem. Soc. 2011, 133, 11904–11907.CrossRefGoogle Scholar
  20. 20.
    Naumann, S.; Unold, J.; Frey, W.; Buchmeiser, M. R. Regioselective cyclopolymerization of 1,7-octadiynes. Macromolecules 2011, 44, 8380–8387.CrossRefGoogle Scholar
  21. 21.
    Kang, E. H.; Yu, S. Y.; Lee, I. S.; Park, S. E.; Choi, T. L. Strategies to enhance cyclopolymerization using third-generation Grubbs catalyst. J. Am. Chem. Soc. 2014, 136, 10508–10514.CrossRefGoogle Scholar
  22. 22.
    Song, W.; Han, H.; Liao, X.; Sun, R.; Wu, J.; Xie, M. Metathesis cyclopolymerization of imidazolium-functionalized 1,6-heptadiyne toward polyacetylene ionomer. Macromolecules 2014, 47, 6181–6188.CrossRefGoogle Scholar
  23. 23.
    Song, W.; Han, H.; Wu, J.; Xie, M. Ladder-like polyacetylene with excellent optoelectronic properties and regular architecture. Chem. Commun. 2014, 50, 12899–12902.CrossRefGoogle Scholar
  24. 24.
    Song, W.; Han, H.; Wu, J.; Xie, M. A bridge-like polymer synthesized by tandem metathesis cyclopolymerization and acyclic diene metathesis polymerization. Polym. Chem. 2015, 6, 24 1118–1126.CrossRefGoogle Scholar
  25. 25.
    Guo, M.; Sun, R.; Han, H.; Wu, J.; Xie, M.; Liao, X. Metathesis cyclopolymerization of 1,6-heptadiyne derivative toward triphenylamine-functionalized polyacetylene with excellent optoelectronic properties and nanocylinder morphology. Macromolecules 2015, 48, 2378–2387.CrossRefGoogle Scholar
  26. 26.
    Kang, E. H.; Kang, C.; Yang, S.; Oks, E.; Choi, T. L. Mechanistic investigations on the competition between the cyclopolymerization and [2 + 2 + 2] cycloaddition of 1, 6-heptadiyne derivatives using second-generation Grubbs catalysts. Macromolecules 2016, 49, 6240–6250.CrossRefGoogle Scholar
  27. 27.
    Jung, K.; Kang, E. H.; Sohn, J. H.; Choi, T. L. Highly β-selective cyclopolymerization of 1,6-heptadiynes and ring-closing enyne metathesis reaction using Grubbs Z-selective catalyst: Unprecedented regioselectivity for Ru-based catalysts. J. Am. Chem. Soc. 2016, 138, 11227–11233.CrossRefGoogle Scholar
  28. 28.
    Song, J. A.; Choi, T. L. Seven-membered ring-forming cyclopolymerization of 1,8-nonadiyne derivatives using Grubbs catalysts: Rational design of monomers and insights into the mechanism for olefin metathesis polymerizations. Macromolecules 2017, 50, 2724–2735.CrossRefGoogle Scholar
  29. 29.
    Kang, C.; Kang, E. H.; Choi, T. L. Successful cyclopolymerization of 1,6-heptadiynes using first-generation Grubbs catalyst twenty years after its invention: Revealing a comprehensive picture of cyclopolymerization using Grubbs catalysts. Macromolecules 2017, 50, 3153–3163.CrossRefGoogle Scholar
  30. 30.
    Yang, S.; Shin, S.; Choi, I.; Lee, J.; Choi, T. L. Direct formation of large-area 2D nanosheets from fluorescent semiconducting homopolymer with orthorhombic crystalline orientation. J. Am. Chem. Soc. 2017, 139, 3082–3088.CrossRefGoogle Scholar
  31. 31.
    Kang, C.; Park, H.; Lee, J.; Choi, T. L. Cascade polymerization via controlled tandem olefin metathesis/metallotropic 1,3-shift reactions for the synthesis of fully conjugated polyenynes. J. Am. Chem. Soc. 2017, 139, 11309–11312.CrossRefGoogle Scholar
  32. 32.
    Ivin, K. J.; Mol, J. C. in Olefin metathesis and metathesis polymerization. Academic Press: San Diego, CA, 1997, 397–410CrossRefGoogle Scholar
  33. 33.
    Yamazaki, M. Industrialization and application development of cyclo-olefin polymer. J. Mol. Catal. A: Chem. 2004, 213, 81–87.CrossRefGoogle Scholar
  34. 34.
    Janiak, C.; Lassahn, P. G. The vinyl homopolymerization of norbornene. Macromol. Rapid Commun. 2001, 22, 479–492.CrossRefGoogle Scholar
  35. 35.
    Kesti, M. R.; Coates, G. W.; Waymouth, R. M. Homogeneous Ziegler-Natta polymerization of functionalized monomers catalyzed by cationic Group IV metallocenes. J. Am. Chem. Soc. 1992, 114, 9679–9680.CrossRefGoogle Scholar
  36. 36.
    Yamamoto, Y.; Nakagai, Y.; Ohkoshi, N.; Itoh, K. Ruthenium(II)-catalyzed isomer-selective cyclization of 1,6-dienes leading to exo-methylenecyclo-pentanes: Unprecedented cycloisomerization mechanism involving ruthenacyclopentane(hydrido) intermediate. J. Am. Chem. Soc. 2001, 123, 6372–6380.CrossRefGoogle Scholar
  37. 37.
    Park, S.; Takeuchi, D.; Osakada, K. Pd complex-promoted cyclopolymerization of functionalized α,ω-dienes and copolymerization with ethylene to afford polymers with cyclic repeating units. J. Am. Chem. Soc. 2006, 128, 3510–3511.CrossRefGoogle Scholar
  38. 38.
    Takeuchi, D.; Matsuura, R.; Park, S.; Osakada, K. Cyclopolymerization of 1,6-heptadienes catalyzed by iron and cobalt complexes: Synthesis of polymers with trans- or cis-fused 1,2-cyclopentanediyl groups depending on the catalyst. J. Am. Chem. Soc. 2007, 129, 7002–7003.CrossRefGoogle Scholar
  39. 39.
    Takeuchi, D.; Fukuda, Y.; Park, S.; Osakada, K. Cyclopolymerization of 9, 9-diallylfluorene promoted by Ni complexes. Stereoselective formation of six- and five-membered rings during the polymer growth. Macromolecules 2009, 42, 5909–5912.CrossRefGoogle Scholar
  40. 40.
    Takeuchi, S.; Matsuura, R.; Fukuda, Y.; Osakada, K. Selective cyclopolymerization of α,ω-dienes and copolymerization with ethylene catalyzed by Fe and Co complexes. Dalton Trans. 2009, 8955–8962.Google Scholar
  41. 41.
    Takeuchi, D. Novel controlled polymerization of cyclo-olefins, dienes, and trienes by utilizing reaction properties of late transition metals. Macromol. Chem. Phys. 2011, 212, 1545–1551.CrossRefGoogle Scholar
  42. 42.
    Motokuni, K.; Takeuchi, D.; Osakada, K. Double cyclopolymerization of monoterminal trienes using Pd catalysis. Polymers containing functionallized cyclic groups with a regulated sequence. Macromolecules 2014, 47, 6522–6526.CrossRefGoogle Scholar
  43. 43.
    Takeuchi, D.; Watanabe, K.; Sogo, K.; Osakada, K. Polymerization of methylenecyclohexanes catalyzed by diimine-Pd complex. Polymers having trans- or cis-1,4- and trans-1,3-cyclohexylene groups. Organometallics 2015, 34, 3007–3011.CrossRefGoogle Scholar
  44. 44.
    Takeuchi, D.; Watanabe, K.; Osakada, K. Synthesis of polyketones containing substituted six-membered rings via Pd-catalyzed copolymerization of methylenecyclohexanes with carbon monoxide. Macromolecules 2015, 48, 6745–6749.CrossRefGoogle Scholar
  45. 45.
    Motokuni, K.; Haupler, B.; Burges, R.; Hager, M. D.; Schubert, U. S. Synthesis and electrochemical properties of novel redoxactive polymers with anthraquinone moieties by Pd-catalyzed cyclopolymerization of dienes. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2184–2190.CrossRefGoogle Scholar
  46. 46.
    Kang, S. K.; Baik, T. G.; Kulak, A. N.; Ha, Y. H.; Lim, Y.; Park, J. Palladium-catalyzed carbocyclization/silastannylation and distannylation of bis(allenes). J. Am. Chem. Soc. 2000, 122, 11529–11530.CrossRefGoogle Scholar
  47. 47.
    Aitken, B. S.; Wieruszewski, P. M.; Graham, K. R.; Reynolds, J. R.; Wagener, K. B. Perfectly regioregular electroactive polyolefins: Impact of inter-chromophore distance on PLED EQE. Macromolecules 2012, 45, 705–712.CrossRefGoogle Scholar
  48. 48.
    Halbach, T. S.; Krause, J. O.; Nuyken, O.; Buchmeiser, M. R. Stereoselective cyclopolymerization of polar 1,6-heptadiynes by novel, tailor-made ruthenium-based metathesis catalysts. Macromol. Rapid Commun. 2005, 26, 784–790.CrossRefGoogle Scholar
  49. 49.
    Kim, S. H.; Kim, Y. H.; Cho, H. N.; Kwon, S. K.; Kim, H. K.; Choi, S. K. Unusual optical absorption behavior, polymer structure, and air stability of poly(1,6-heptadiyne)s with substituents at the 4-position. Macromolecules 1996, 29, 5422–5426.CrossRefGoogle Scholar
  50. 50.
    Rojas, G.; Inci, B.; Wei, Y.; Wagener, K. B. Precision polyethylene: Changes in morphology as a function of alkyl branch size. J. Am. Chem. Soc. 2009, 131, 17376–17386.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shao-Fei Song
    • 1
  • Xiao-Yu Liu
    • 1
  • Hao Zhang
    • 1
  • Zhi-Sheng Fu
    • 1
  • Jun-Ting Xu
    • 1
  • Zhi-Qiang Fan
    • 1
  1. 1.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations