Chinese Journal of Polymer Science

, Volume 37, Issue 3, pp 235–242 | Cite as

Thermo-sensitive Microgels Supported Gold Nanoparticles as Temperature-mediated Catalyst

  • Xian-Jing Zhou
  • Hai-Peng Lu
  • Ling-Li Kong
  • Dong Zhang
  • Wei Zhang
  • Jing-Jing Nie
  • Jia-Yin Yuan
  • Bin-Yang DuEmail author
  • Xin-Ping WangEmail author


Microgels with a thermo-sensitive poly(N-isopropylacrylamide) (polyNIPAm) backbone and bis-imidazolium (VIM) ionic cross-links, denoted as poly(NIPAm-co-VIM), were successfully prepared. The as-synthesized ionic microgels were converted to nanoreactors, denoted as Au@PNI MGs, upon generation and immobilization of gold nanoparticles (Au NPs) of 5–8 nm in size into poly(NIPAm-co-VIM). The content of Au NPs in microgels could be regulated by controlling the 1,6-dibromohexane/vinylimidazole molar ratio in the quaternization reaction. The microgel-based nanoreactors were morphologically spherical and uniform in size, and presented reversible thermo-sensitive behavior with volume phase transition temperatures (VPTTs) at 39–40 °C. The Au@PNI MGs were used for the reduction of 4-nitrophenol, of which the catalytic activity could be modulated by temperature.


Microgel Thermo-sensitive Gold nanoparticle Catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the National Natural Science Foundation of China (No. 21704092) and Science Foundation of Zhejiang Sci-Tech University (No. 16062194-Y) for financial support.

Supplementary material

10118_2019_2182_MOESM1_ESM.pdf (2.1 mb)
Thermo-sensitive Microgels Supported Gold Nanoparticles as Temperature-mediated Catalyst


  1. 1.
    Corma, A.; Serna, P.; Concepcion, P.; Juan Calvino, J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008,130, 8748–8753.Google Scholar
  2. 2.
    Zhang, J.; Chen, G.; Guay, D.; Chaker, M.; Ma, D. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125–2130.CrossRefGoogle Scholar
  3. 3.
    Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl. Catal. B 2015,162, 372–380.Google Scholar
  4. 4.
    Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Re. 2015, 287,114–136.Google Scholar
  5. 5.
    Guo, M.; He, J.; Li, Y.; Ma, S.; Sun, X. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J. Hazard. Mater. 2016, 310, 89–97.CrossRefGoogle Scholar
  6. 6.
    Chang, Y. C.; Chen, D. H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009,165, 664–669.Google Scholar
  7. 7.
    Zhang, W.; Tan, F.; Wang, W.; Qiu, X.; Qiao, X.; Chen, J. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J. Hazard. Mater. 2012, 217, 36–42.Google Scholar
  8. 8.
    Ghosh, S. K.; Mandal, M.; Kundu, S.; Nath, S.; Pal, T. Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal A 2004, 268, 61–66.CrossRefGoogle Scholar
  9. 9.
    Behrens, S.; Heyman, A.; Maul, R.; Essig, S.; Steigerwald, S.; Quintilla, A.; Wenzel, W.; Buerck, J.; Dgany, O.; Shoseyov, O. Constrained synthesis and organization of catalytically active metal nanoparticles by self-assembled protein templates. Adv. Mater. 2009, 21, 3515–3519.CrossRefGoogle Scholar
  10. 10.
    Saha, A.; Ranu, B. Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate. J. Org. Chem. 2008, 73, 6867–6870.CrossRefGoogle Scholar
  11. 11.
    Wu, Y.; Wen, M.; Wu, Q.; Fang, H. Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J. Phys. Chem. C 2014,118, 6307–6313.Google Scholar
  12. 12.
    Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B. C. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water. Chem. Commun. 2012, 48, 7982–7984.CrossRefGoogle Scholar
  13. 13.
    Shen, W.; Qu, Y.; Pei, X.; Li, S.; You, S.; Wang, J.; Zhang, Z.; Zhou, J. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp WL-Au. J. Hazard. Mater. 2017, 321,299–306.CrossRefGoogle Scholar
  14. 14.
    Wu, S.; Tseng, C.; Lin, Y.; Lin, C.; Hung, Y.; Mou, C. Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst. J. Mater. Chem. 2011, 21, 789–794.CrossRefGoogle Scholar
  15. 15.
    Hu, H.; Xin, J. H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions— a review. J. Mater. Chem. A 2015, 3, 11157–11182.CrossRefGoogle Scholar
  16. 16.
    Ballarin, B.; Cassani, M. C.; Tonelli, D.; Boanini, E.; Albonetti, S.; Blosi, M.; Gazzano, M. Gold nanoparticle-containing membranes from in situ reduction of a gold(III)-aminoethylimidazolium aurate salt. J. Physs. Chem. C 2010,114, 9693–9701.CrossRefGoogle Scholar
  17. 17.
    Jiang, Z. J.; Liu, C. Y.; Sun, L. W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B 2005, 109, 1730–1735.CrossRefGoogle Scholar
  18. 18.
    Li, M.; Chen, G. Revisiting catalytic model reaction p-nitrophenol/ NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale 2013, 5, 11919–11927.CrossRefGoogle Scholar
  19. 19.
    Plamper, F. A.; Richtering, W. Functional microgels and microgel systems. Acc. Chem. Res. 2017, 50, 131–140.CrossRefGoogle Scholar
  20. 20.
    Xue, J.; Zhang, Z.; Nie, J.; Du, B. Formation of microgels by utilizing the reactivity of catechols with radicals. Macromolecules 2017, 50, 5285–5292.CrossRefGoogle Scholar
  21. 21.
    Cao, Q. C.; Wang, X.; Wu, D. C. Controlled cross-linking strategy for formation of hydrogels, microgels and nanogels. Chinese. J. Polym. Sci. 2018, 36, 8–17.CrossRefGoogle Scholar
  22. 22.
    Lyon, L. A.; Fernandez-Nieves, A. The polymer/colloid duality of microgel suspensions. Annu. Re. Phys. Chem. 2012, 63, 25–43.CrossRefGoogle Scholar
  23. 23.
    Li, Z. B.; Xiang, Y. H.; Zhou, X. J.; Nie, J. J.; Peng, M.; Du, B. Y. Thermo-sensitive poly(DEGMMA-co-MEA) microgels: Synthesis, characterization and interfacial interaction with adsorbed protein layer. Chinese. J. Polym. Sci. 2015, 33, 1516–1526.CrossRefGoogle Scholar
  24. 24.
    Deshmukh, O. S.; van den Ende, D.; Stuart, M. C.; Mugele, F.; Duits, M. H. G. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 2015, 222, 215–227.CrossRefGoogle Scholar
  25. 25.
    Hu, W. T.; Yang, H.; Cheng, H.; Hu, H. Q. Morphology evolution of Polystyrene-core/poly(A-isopropylacrylamide)-shell microgel synthesized by one-pot polymerization. Chinese. J. Polym. Sci. 2017, 35, 1156–1164.CrossRefGoogle Scholar
  26. 26.
    Weng, J. Y.; Tang, Z.; Guan, Y.; Zhu, X. X.; Zhang, Y. J. Assembly of highly ordered 2D arrays of silver-PNIPAM hybrid microgels. Chinese. J. Polym. Sci. 2017, 35, 1212–1221.CrossRefGoogle Scholar
  27. 27.
    Zhou, X.; Nie, J.; Du, B. Functionalized ionic microgel sensor array for colorimetric detection and discrimination of metal ions. ACS Appl. Mater. Interfaces 2017, 9, 20913–20921.CrossRefGoogle Scholar
  28. 28.
    Xue, B.; Kozlovskaya, V.; Kharlampieva, E. Shaped stimuli-responsive hydrogel particles: syntheses, properties and biological responses. J. Mater. Chem. B 2017, 5, 9–35.CrossRefGoogle Scholar
  29. 29.
    Zhou, X.; Qi, Y.; Zhang, Z.; Nie, J.; Huang, Y.; Du, B. Novel engineered microgels with amphipathic network structures for simultaneous tumor and inflammation depression. ACS Appl. Mater. Interfaces 2018, 10, 10501–10512.CrossRefGoogle Scholar
  30. 30.
    Zhou, X.; Yang, Q.; Li, J.; Nie, J.; Tang, G.; Du, B. Thermosensitive poly(VCL-4VP-NVP) ionic microgels: synthesis, cytotoxicity, hemocompatibility, and sustained release of antiinflammatory drugs. Mater. Chem. Front. 2017,1, 369–379.Google Scholar
  31. 31.
    Saunders, B. R.; Vincent, B. Microgel particles as model colloids: theory, properties and applications. Adv. Colloid Interface Sci. 1999, 80, 1–25.CrossRefGoogle Scholar
  32. 32.
    Zhou, X.; Nie, J.; Xu, J.; Du, B. Thermo-sensitive ionic microgels via post quaternization cross-linking: Fabrication, property, and potential application. Colloid. Polym. Sci. 2015, 293, 2101–2111.CrossRefGoogle Scholar
  33. 33.
    Zhou, X.; Zhou, Y.; Nie, J.; Ji, Z.; Xu, J.; Zhang, X.; Du, B. Thermosensitive ionic microgels via surfactant-free emulsion copolymerization and in situ quaternization cross-linking. ACS Appl. Mater. Interfaces 2014, 6, 4498–4513.CrossRefGoogle Scholar
  34. 34.
    Srivastava, S. K.; Guix, M.; Schmidt, O. G. Wastewater mediated activation of micromotors for efficient water cleaning. Aano Lett. 2016, 16, 817–821.Google Scholar
  35. 35.
    Patel, N.; Patton, B.; Zanchetta, C.; Fernandes, R.; Guella, G.; Kale, A.; Miotello, A. Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2008, 33, 287–292.CrossRefGoogle Scholar
  36. 36.
    Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 55–75.Google Scholar
  37. 37.
    Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 2006, 45, 813–816.CrossRefGoogle Scholar
  38. 38.
    Yuan, J.; Wunder, S.; Warmuth, F.; Lu, Y. Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer 2012, 53,43–49.Google Scholar
  39. 39.
    Pich, A. Z.; Adler, H. J. P. Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym. Int. 2007, 56, 291–307.CrossRefGoogle Scholar
  40. 40.
    Zhou, X.; Nie, J.; Wang, Q.; Du, B. Thermosensitive ionic microgels with pH tunable degradation via in situ quaternization cross-linking. Macromolecules 2015, 48, 3130–3139.CrossRefGoogle Scholar
  41. 41.
    Benee, L. S.; Snowden, M. J.; Chowdhry, B. Z. Novel gelling behavior of poly(A-isopropylacrylamide-co-vinyl laurate) microgel dispersions. Langmuir 2002, 18, 6025–6030.CrossRefGoogle Scholar
  42. 42.
    Lu, Y.; Mei, Y.; Walker, R.; Ballauff, M.; Drechsler, M. ‘Nanotree’-type spherical polymer brush particles as templates for metallic nanoparticles. Polymer 2006, 47, 4985–4995.CrossRefGoogle Scholar
  43. 43.
    Wunder, S.; Lu, Y.; Albrecht, M.; Ballauff, M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal. 2011,1, 908–916.Google Scholar
  44. 44.
    Wei, J.; Wang, H.; Deng, Y.; Sun, Z.; Shi, L.; Tu, B.; Luqman, M.; Zhao, D. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc. 2011, 133, 20369–20377.CrossRefGoogle Scholar
  45. 45.
    Zhang, H.; Yang, X. L. Magnetic polymer microsphere stabilized gold nanocolloids as a facilely recoverable catalyst. Chinese. J. Polym. Sci. 2011, 29, 342–351.CrossRefGoogle Scholar
  46. 46.
    Lu, Y.; Yuan, J.; Polzer, F.; Drechsler, M.; Preussners, J. In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels. ACS Aano 2010, 4, 7078–7086.Google Scholar
  47. 47.
    Bawane, S. P.; Sawant, S. B. Hydrogenation ofp-nitrophenol to metol using Raney nickel catalyst: Reaction kinetics. Appl. Catal. A 2005, 293,162–170.Google Scholar
  48. 48.
    Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814–8820.CrossRefGoogle Scholar
  49. 49.
    Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem. Mater. 2007, 19, 1062–1069.CrossRefGoogle Scholar
  50. 50.
    Dasog, M.; Hou, W.; Scott, R. W. J. Controlled growth and catalytic activity of gold monolayer protected clusters in presence of borohydride salts. Chem. Commun. 2011, 47, 8569–8571.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xian-Jing Zhou
    • 1
  • Hai-Peng Lu
    • 1
  • Ling-Li Kong
    • 1
  • Dong Zhang
    • 1
  • Wei Zhang
    • 1
  • Jing-Jing Nie
    • 2
  • Jia-Yin Yuan
    • 3
  • Bin-Yang Du
    • 4
    Email author
  • Xin-Ping Wang
    • 1
    Email author
  1. 1.Department of ChemistryZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Department of ChemistryZhejiang UniversityHangzhouChina
  3. 3.Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
  4. 4.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations