Chinese Journal of Polymer Science

, Volume 37, Issue 2, pp 164–177 | Cite as

Modeling of the Mechanical Properties of Blend Based Polymer Nanocomposites Considering the Effects of Janus Nanoparticles on Polymer/Polymer Interface

  • Esmail SharifzadehEmail author


Blend based polymer nanocomposites, comprising Janus nanoparticles at their polymer/polymer interface, were analytically/experimentally evaluated. The modeling procedure was performed in two stages: first, modeling of polymer/polymer interface region comprising Janus nanoparticles and second, modeling of the entire systems as a function of the variation of the blend morphology. In the first stage, the modeling procedure was performed based on the development of the model proposed by Ji et al. and in the second stage, the fundamental of Kolarik’s model was used in order to propose a developed and more practical model. It was shown that Janus nanoparticles may form dual polymer/particle interphase at polymer/polymer interface which can drastically affect the final mechanical properties of the system. Comparing the results of tensile tests imposed on different prepared samples with the predictions of the model proved its accuracy and reliability (error < 9%).


Blend based polymer nanocomposites Janus nanoparticles Modeling of mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2019_2178_MOESM1_ESM.pdf (644 kb)
Modeling of the Mechanical Properties of Blend Based Polymer Nanocomposites Considering the Effects of Janus Nanoparticles on Polymer/Polymer Interface


  1. 1.
    Fathi, A.; Lee, S.; Breen, A.; Shirazi, A. N.; Valtchev, P.; Dehghani, F. Enhancing the mechanical properties and physical stability of biomimetic polymer hydrogels for micro–patterning and tissue engineering applications. Eur. Polym. J. 2014, 59, 161–170.CrossRefGoogle Scholar
  2. 2.
    Minaei–Zaim, M.; Ghasemi, I.; Karrabi, M.; Azizi, H. Effect of injection molding parameters on properties of cross–linked low-density polyethylene/ethylene vinyl acetate/organoclay nanocomposite foams. Iran Polym. J. 2012, 21, 537–546.CrossRefGoogle Scholar
  3. 3.
    Shaw, M. T. in Preparation of blends. in polymer blends and mixtures. Walsh, D. J.; Higgins, J. S.; Maconnachie, A., Eds. Springer Netherlands: Dordrecht, 1985, p57–6.Google Scholar
  4. 4.
    Galloway, J. A.; Macosko, C. W. Comparison of methods for the detection of cocontinuity in poly(ethylene oxide)/polystyrene blends. Polym. Eng. Sci. 2004, 44, 714–727.CrossRefGoogle Scholar
  5. 5.
    Zaikov, G. E.; Bazylyak, L. I.; Haghi, A. K. in Functional polymer blends and nanocomposites: a practical engineering approach. Apple Academic Press, 2014CrossRefGoogle Scholar
  6. 6.
    Miles, I. S.; Zurek, A. Preparation, structure, and properties of two–phase co–continuous polymer blends. Polym. Eng. Sci. 1988, 28, 796–805.CrossRefGoogle Scholar
  7. 7.
    Pivsa–Art, W.; Chaiyasat, A.; Pivsa–Art, S.; Yamane, H.; Ohara, H. Preparation of polymer blends between poly(lactic acid) and poly(butylene adipate–co–terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 2013, 34, 549–554.CrossRefGoogle Scholar
  8. 8.
    Khaparde, D. Preparation and prediction of physical properties of cellulose acetate and polyamide polymer blend. Carbohydr. Polym. 2017, 173, 338–343.CrossRefGoogle Scholar
  9. 9.
    Lepcio, P.; Ondreas, F.; Zarybnicka, K.; Zboncak, M.; Caha, O.; Jancar, J. Bulk polymer nanocomposites with preparation protocol governed nanostructure: the origin and properties of aggregates and polymer bound clusters. Soft Matter 2018, 14, 2094–2103.CrossRefGoogle Scholar
  10. 10.
    Ucankus, G.; Ercan, M.; Uzunoglu, D.; Culha, M., 1–Methods for preparation of nanocomposites in environmental remediation A2–Hussain, Chaudhery Mustansar. In New polymer nanocomposites for environmental remediation, Mishra, A. K., Ed. Elsevier, 2018, pp 1–2.Google Scholar
  11. 11.
    Mittal, V. in Polymer nanotube nanocomposites: synthesis, properties, and applications. Wiley, 2010CrossRefGoogle Scholar
  12. 12.
    Koo, J. H. in Fundamentals, properties, and applications of polymer nanocomposites. Cambridge University Press, 2016Google Scholar
  13. 13.
    Thomas, S.; Grohens, Y.; Jyotishkumar, P. in Characterization of polymer blends: miscibility, morphology and interfaces. Wiley, 2014CrossRefGoogle Scholar
  14. 14.
    Isayev, A. I. in Encyclopedia of polymer blends: volume 1: Fundamentals. John Wiley & Sons, 2010CrossRefGoogle Scholar
  15. 15.
    Bai, L.; He, S.; Fruehwirth, J. W.; Stein, A.; Macosko, C. W.; Cheng, X. Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites. J. Rheol. 2017, 61, 575–587.CrossRefGoogle Scholar
  16. 16.
    Landel, R. F.; Nielsen, L. E. in Mechanical properties of polymers and composites, Second Edition. Taylor & Francis, 1993Google Scholar
  17. 17.
    Chiu, F. C.; Yen, H. Z.; Lee, C. E. Characterization of PP/HDPE blend–based nanocomposites using different maleated polyolefins as compatibilizers. Polym. Test. 2010, 29, 397–406.CrossRefGoogle Scholar
  18. 18.
    Naffakh, M.; Diez–Pascual, A. M.; Marco, C. Polymer blend nanocomposites based on poly(L–lactic acid), polypropylene and WS2 inorganic nanoltubes. RSC Adv. 2016, 6, 40033–40044.CrossRefGoogle Scholar
  19. 19.
    Baudouin, A. C.; Devaux, J.; Bailly, C. Localization of carbon nanotubes at the interface in blends of polyamide and ethyleneacrylate copolymer. Polymer 2010, 51, 1341–1354.CrossRefGoogle Scholar
  20. 20.
    Sharifzadeh, E.; Salami–Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. Synthesis of silica Janus nanoparticles by buoyancy effect–induced desymmetrization process and their placement at the PS/PMMA interface. Colloid. Polym. Sci. 2017, 295, 25–36.CrossRefGoogle Scholar
  21. 21.
    Bryson, K. C.; Löbling, T. I.; Müller, A. H. E.; Russell, T. P.; Hayward, R. C. Using Janus nanoparticles to trap polymer blend morphologies during solvent–evaporation–induced demixing. Macromolecules 2015, 48, 4220–4227.CrossRefGoogle Scholar
  22. 22.
    Paunov, V. N.; Cayre, O. J. Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Adv. Mater. 2004, 16, 788–791.CrossRefGoogle Scholar
  23. 23.
    Lv, W.; Lee, K. J.; Li, J.; Park, T.–H.; Hwang, S.; Hart, A. J.; Zhang, F.; Lahann, J. Anisotropic Janus catalysts for spatially controlled chemical reactions. Small 2012, 8, 3116–3122.CrossRefGoogle Scholar
  24. 24.
    Roh, K. H.; Martin, D. C.; Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 2005, 4, 759.CrossRefGoogle Scholar
  25. 25.
    Giermanska–Kahn, J.; Laine, V.; Arditty, S.; Schmitt, V.; Leal–Calderon, F. Particle–stabilized emulsions comprised of solid droplets. Langmuir 2005, 21, 4316–4323.CrossRefGoogle Scholar
  26. 26.
    Fernandez–Rodriguez, M. A.; Rodriguez–Valverde, M. A.; Cabrerizo–Vilchez, M. A.; Hidalgo–Alvarez, R. Surface activity of Janus particles adsorbed at fluid–fluid interfaces: Theoretical and experimental aspects. Adv. Colloid Interface Sci. 2016, 233,240–254.CrossRefGoogle Scholar
  27. 27.
    Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocompositesA review. Prog. Polym. Sci. 2013, 38, 1232–1261.CrossRefGoogle Scholar
  28. 28.
    Mahdavi, M.; Ahmad, M.; Haron, M.; Namvar, F.; Nadi, B.; Rahman, M.; Amin, J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 2013, 18, 7533–7548.CrossRefGoogle Scholar
  29. 29.
    Taguet, A.; Cassagnau, P.; Lopez–Cuesta, J. M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog. Polym. Sci. 2014, 39,1526–1563.CrossRefGoogle Scholar
  30. 30.
    Sharifzadeh, E.; Ghasemi, I.; Karrabi, M.; Azizi, H. A new approach in modeling of mechanical properties of binary phase polymeric blends. Iran Polym. J. 2014, 23, 525–530.CrossRefGoogle Scholar
  31. 31.
    Sharifzadeh, E.; Ghasemi, I.; Karrabi, M.; Azizi, H. A new approach in modeling of mechanical properties of nanocomposites: effect of interface region and random orientation. Iran Polym. J. 2014, 23, 835–845.CrossRefGoogle Scholar
  32. 32.
    Sharifzadeh, E.; Ghasemi, I.; Safajou–Jahankhanemlou, M. Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach. Iran Polym. J. 2015, 24, 735–746.CrossRefGoogle Scholar
  33. 33.
    Zare, Y. Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology. J. Colloid Interface Sci. 2016, 465, 342–346.CrossRefGoogle Scholar
  34. 34.
    Zare, Y. Modeling of tensile modulus in polymer/carbon nanotubes (CNT) nanocomposites. Synth. Met. 2015, 202, 68–72.CrossRefGoogle Scholar
  35. 35.
    Zare, Y.; Rhee, K. Y.; Park, S. J. Modeling of tensile strength in polymer particulate nanocomposites based on material and interphase properties. J. Appl. Polym. Sci. 2017,134, 44869.CrossRefGoogle Scholar
  36. 36.
    Bao, W. S.; Meguid, S. A.; Zhu, Z. H.; Meguid, M. J. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnology 2011, 22, 485704.CrossRefGoogle Scholar
  37. 37.
    Zare, Y. Modeling approach for tensile strength of interphase layers in polymer nanocomposites. J. Colloid Interface Sci. 2016, 471, 89–93.CrossRefGoogle Scholar
  38. 38.
    Sharifzadeh, E.; Ghasemi, I.; Qarebagh, A. N. Modeling of blend–based polymer nanocomposites using a knotted approximation of Young's modulus. Iran Polym. J. 2015, 24, 1039–1047.CrossRefGoogle Scholar
  39. 39.
    Mortazavi, S.; Ghasemi, I.; Oromiehie, A. Prediction of tensile modulus of nanocomposites based on polymeric blends. Iran Polym. J. 2013, 22, 437–445.CrossRefGoogle Scholar
  40. 40.
    Dong, B.; Huang, Z.; Chen, H.; Yan, L. T. Chain–stiffness–induced entropy effects mediate interfacial assembly of Janus nanoparticles in block copolymers: from interfacial nanostructures to optical responses. Macromolecules 2015, 48, 5385–5393.CrossRefGoogle Scholar
  41. 41.
    Zhu, G.; Huang, Z.; Xu, Z.; Yan, L. T. Tailoring interfacial nanoparticle organization through entropy. Acc. Chem. Res. 2018, 51, 900–909.CrossRefGoogle Scholar
  42. 42.
    Chen, P.; Yang, Y.; Dong, B.; Huang, Z.; Zhu, G.; Cao, Y.; Yan, L. T. Polymerization–induced interfacial self–assembly of Janus nanoparticles in block copolymers: reaction–mediated entropy effects, diffusion dynamics, and tailorable micromechanical behaviors. Macromolecules 2017, 50, 2078–2091.CrossRefGoogle Scholar
  43. 43.
    Ji, X. L.; Jing, J. K.; Jiang, W.; Jiang, B. Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983–993.CrossRefGoogle Scholar
  44. 44.
    Wang, J. F.; Carson, J. K.; North, M. F.; Cleland, D. J. A knotted and interconnected skeleton structural model for predicting Young's modulus of binary phase polymer blends. Polym. Eng. Sci. 2010, 50, 643–651.CrossRefGoogle Scholar
  45. 45.
    Kolarík, J. Three–dimensional models for predicting the modulus and yield strength of polymer blends, foams, and particulate composites. Polym. Compos. 1997, 18, 433–441.CrossRefGoogle Scholar
  46. 46.
    Sharifzadeh, E.; Salami–Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. A temperature–controlled method to produce Janus nanoparticles using high internal interface systems:Experimental and theoretical approaches. Colloid Surface A 2016, 506, 56–62.CrossRefGoogle Scholar
  47. 47.
    Sharifzadeh, E.; Salami–Kalajahi, M.; Salami Hosseini, M.; Razavi Aghjeh, M. K.; Najafi, S.; Jannati, R.; Hatef, Z. Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion. J. Dispersion Sci. Technol. 2017, 38, 985–991.CrossRefGoogle Scholar
  48. 48.
    Mekhilef, N.; Verhoogt, H. Phase inversion and dual–phase continuity in polymer blends: theoretical predictions and experimental results. Polymer 1996, 37, 4069–4077.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations