Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 3, pp 268–278 | Cite as

The In-plane Orientation and Thermal Mechanical Properties of the Chemically Imidized Polyimide Films

  • Zhen-He Wang
  • Xing Chen
  • Hai-Xia YangEmail author
  • Jiang Zhao
  • Shi-Yong YangEmail author
Article
  • 23 Downloads

Abstract

The thermal and mechanical properties of the chemically imidized polyimide (CIPI) films and thermally imidized polyimide (TIPI) films were investigated systematically. Experimental results indicated that the CIPI films show dramatically enhanced tensile strength and modulus with obviously reduced coefficient of thermal expansion (CTE) in comparison with TIPI films. These enhancements results from the high in-plane orientation and close packing of the CIPI backbones. Compared with thermal imidization which starts at about 140 °C, the chemical imidization activated by acetic anhydride and isoquinoline initiates the cyclization even at room temperature. The resulting imide rings restrict the mobility of polymer chains and lead to the in-plane orientation with solvent evaporation. Additionally, fewer small molecules remain in the films after treated at 120 °C by chemical imidization than by thermal imidization. The polymer chain plasticization caused by the evaporation of small molecules at high temperature is obviously restricted. Moreover, the partially imidized polymer inhibits the decomposition of mainchains that occurs at subsequent high temperature process, being beneficial to the formation of high molecular weight PI films. Hence, chemical imidization pathway shows apparent advantage to produce PI films with great combined properties, including high modulus, strength and toughness, as well as high thermal dimension stability etc.

Keywords

Polyimide film Chemical imidization Thermal imidization In-plane orientation CTE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by National Basic Research Program of China (No. 2014CB643604).

Supplementary material

10118_2019_2173_MOESM1_ESM.pdf (721 kb)
The In-plane Orientation and Thermal Mechanical Properties of the Chemically Imidized Polyimide Films

References

  1. 1.
    Ghosh, M. in Polyimides: Fundamentals and applications. CRC Press: 1996.Google Scholar
  2. 2.
    Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.CrossRefGoogle Scholar
  3. 3.
    Mittal, K. L. in Polyimides: Synthesis, characterization, and applications. Springer Science & Business Media: Boston, 1984.CrossRefGoogle Scholar
  4. 4.
    Chen, H. L.; Ho, S. H.; Wang, T. H.; Chen, K. M.; Pan, J. P.; Liang, S. M.; Hung, A. Curl-free high-adhesion polyimide/copper laminate. J. Appl. Polym. Sci. 1994, 51, 1647–1652.CrossRefGoogle Scholar
  5. 5.
    Numata, S.; Ochara, S.; Fujisaki, K.; Imaizumi, J.; Kinjo, N. Thermal-expansion behavior of various aromatic polyimides. J. Appl. Polym. Sci. 1986, 31, 101–110.CrossRefGoogle Scholar
  6. 6.
    Ding, M. X. in Polyimides: Chemistry, relationship between structure and properties and materials. Science Press: Beijing, China, 2012.Google Scholar
  7. 7.
    Lee, Y. I.; Choa, Y. H. Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. J. Mater. Chem. 2012, 22, 12517–12522.CrossRefGoogle Scholar
  8. 8.
    Long, K.; Kattamis, A.; Cheng, I. C.; Gao, Y. X.; Gleskova, H.; Wagner, S.; Sturm, J. C. In P-24: High-temperature (250 °C) amorphous-silicon TFT’s on clear plastic substrates. SID Symposium Digest of Technical Papers 2005, 36, 313–315.CrossRefGoogle Scholar
  9. 9.
    Numata, S.; Miwa, T. Thermal-expansion coefficients and moduli of uniaxially stretched polyimide films with rigid and flexible molecular chains. Polymer 1989, 30, 1170–1174.CrossRefGoogle Scholar
  10. 10.
    Wang, H. Y.; Liu, T. J.; Liu, S. F.; Jeng, J. L.; Guan, C. E. Thermal and mechanical properties of stretched recyclable polyimide film. J. Appl. Polym. Sci. 2011, 122, 210–219.CrossRefGoogle Scholar
  11. 11.
    Wang, L. N.; Yu, X. H.; Wang, D. M.; Zhao, X. G.; Yang, D.; urRehman, S.; Chen, C. H.; Zhou, H. W.; Dang, G. D. High modulus and high strength ultra-thin polyimide films with hotstretch induced molecular orientation. Mater. Chem. Phys. 2013, 139, 968–974.CrossRefGoogle Scholar
  12. 12.
    Bae, W. J.; Kovalev, M. K.; Kalinina, F.; Kim, M.; Cho, C. Towards colorless polyimide/silica hybrids for flexible substrates. Polymer 2016, 105, 124–132.CrossRefGoogle Scholar
  13. 13.
    Tsai, M. H.; Huang, Y. C.; Tseng, I. H.; Yu, H. P.; Lin, Y. K.; Huang, S. L. Thermal and mechanical properties of polyimide/nano-silica hybrid films. Thin Solid Films 2011, 519, 5238–5242.CrossRefGoogle Scholar
  14. 14.
    Yamashina, N.; Isobe, T.; Ando, S. Low thermal expansion composites prepared from polyimide and ZrW2O8 particles with negative thermal expansion. J. Photopolym. Sci. Technol. 2012, 25, 385–388.CrossRefGoogle Scholar
  15. 15.
    An, L.; Pan, Y. Z.; Shen, X. W.; Lu, H. B.; Yang, Y. L. Rodlike attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. J. Mater. Chem. 2008, 18, 4928–4941.CrossRefGoogle Scholar
  16. 16.
    Choi, C. H.; Sohn, B. H.; Chang, J. H. Colorless and transparent polyimide nanocomposites: Comparison of the properties of homo-and co-polymers. J. Ind. Eng. Chem. 2013, 19, 1593–1599.CrossRefGoogle Scholar
  17. 17.
    Jin, H. S.; Chang, J. H.; Kim, J. C. Synthesis and characterization of colorless polyimide nanocomposite films containing pendant trifluoromethyl groups. Macromol. Res. 2008, 16, 503–509.CrossRefGoogle Scholar
  18. 18.
    Xenopoulos, C.; Mascia, L.; Shaw, S. J. Polyimide-silica hybrids derived from an isoimide oligomer precursor. J. Mater. Chem. 2002, 12, 213–218.CrossRefGoogle Scholar
  19. 19.
    Hasegawa, M.; Matano, T.; Shindo, Y.; Sugimura, T. Spontaneous molecular orientation of polyimides induced by thermal imidization. 2. In-plane orientation. Macromolecules 1996, 29, 7897–7909.Google Scholar
  20. 20.
    Inoue, H.; Sasaki, Y.; Ocawa, T. Properties of copolyimides prepared from different tetracarboxylic dianhydrides and diamines. J. Appl. Polym. Sci. 1996, 62, 2303–2310.CrossRefGoogle Scholar
  21. 21.
    Song, G. L.; Wang, S.; Wang, D. M.; Zhou, H. W.; Chen, C. H.; Zhao, X. G.; Dang, G. D. Rigidity enhancement of polyimides containing benzimidazole moieties. J. Appl. Polym. Sci. 2013, 130, 1653–1658.CrossRefGoogle Scholar
  22. 22.
    Yu, X. H.; Liang, W. H.; Cao, J. H.; Wu, D. Y. Mixed rigid and flexible component design for high-performance polyimide films. Polymers 2017, 9, 451.CrossRefGoogle Scholar
  23. 23.
    Hasegawa, M.; Shindo, Y.; Sugimura, T.; Yokota, R.; Kochi, M.; Mita, I. Spontaneous molecular-orientation of polyimides induced by thermal imidization. 1. Uniaxial stretching of polyamic acid film. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 1299–1303.Google Scholar
  24. 24.
    Ishii, J.; Shimizu, N.; Ishihara, N.; Ikeda, Y.; Sengui, N.; Matano, T.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (4): Casting-and melt-induced in-plane orientation. Eur. Polym. J. 2010, 46, 69–80.CrossRefGoogle Scholar
  25. 25.
    Sroog, C. E. Polyimides. Prog. Polym. Sci. 1991, 16, 561–694.CrossRefGoogle Scholar
  26. 26.
    Dinehart, R. A.; Wright, W. W. Preparation and fabrication of aromatic polyimides. J. Appl. Polym. Sci. 1967, 11, 609–627.CrossRefGoogle Scholar
  27. 27.
    Kreuz, J. A.; Endrey, A. L.; Gay, F. P.; Srong, C. E. Studies of thermal cyclizations of polyamic acids and tertiary amine salts. J. Polym. Sci., Part A: Polym. Chem. 1966, 4, 2607–2616.CrossRefGoogle Scholar
  28. 28.
    Feger, C. Curing of polyimides. Prog. Polym. Sci. 1989, 29, 347–351.Google Scholar
  29. 29.
    Brekner, M. J.; Feger, C. Curing studies of a polyimide precursor. II. Polyamic acid. J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 2479–2491.CrossRefGoogle Scholar
  30. 30.
    Kotera, M.; Nishino, T.; Nakamae, K. Imidization processes of aromatic polyimide by temperature modulated DSC. Polymer 2000, 41, 3615–3619.CrossRefGoogle Scholar
  31. 31.
    Nishino, T.; Kotera, M.; Inayoshi, N.; Miki, N.; Nakamae, K. Residual stress and microstructures of aromatic polyimide with different imidization processes. Polymer 2000, 41, 6913–6918.CrossRefGoogle Scholar
  32. 32.
    Jo, B. W.; Ahn, K. H.; Lee, S. J. Effect of thermal history during drying and curing process on the chain orientation of rodshaped polyimide. Polymer 2014, 55, 5829–5836.CrossRefGoogle Scholar
  33. 33.
    Shin, T. J.; Lee, B.; Youn, H. S.; Lee, K. B.; Ree, M. Time-resolved synchrotron X-ray diffraction and infrared spectroscopic studies of imidization and structural evolution in a micro-scaled film of PMDA-3,4′-ODA poly(amic acid). Langmuir 2001, 17, 7842–7850.CrossRefGoogle Scholar
  34. 34.
    Young, P. R.; Davis, J. R. J.; Chang, A. C.; Richardson, J. N. Characterization of a thermally imidized soluble polyimide film. J. Polym. Sci., Part A: Polym. Chem. 1990, 28, 3107–3122.CrossRefGoogle Scholar
  35. 35.
    Pryde, C. A. IR studies of polyimides. I. Effects of chemical and physical changes during cure. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 711–724.Google Scholar
  36. 36.
    Unsal, E.; Cakmak, M. Real-time characterization of physical changes in polyimide film formation: From casting to imidization. Macromolecules 2013, 46, 8616–8627.CrossRefGoogle Scholar
  37. 37.
    Chen, W. J.; Chen, W.; Zhang, B. Q.; Yang, S. Y.; Liu, C. Y. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 2017, 109, 205–215.CrossRefGoogle Scholar
  38. 38.
    Kailani, M. H.; Sung, C. S.; Huang, S. J. Syntheses and characterization of model imide compounds and chemical imidization study. Macromolecules 1992, 25, 3751–3757.CrossRefGoogle Scholar
  39. 39.
    Zhai, Y.; Yang, Q.; Zhu, R. Q.; Gu, Y. The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film. J. Mater. Chem. 2008, 43, 338–344.Google Scholar
  40. 40.
    Wang, Y.; Wang, Y.; Jia, Z. X.; Qin, J. Q.; Gu, Y. Effect of pre-imidization on the aggregation structure and properties of polyimide films. Polymer 2012, 53, 4157–4163.CrossRefGoogle Scholar
  41. 41.
    Yang, W. K.; Liu, F. F.; Li, G. M.; Zhang, E. S.; Xue, Y. H.; Dong, Z. X.; Qiu, X. P.; Ji, X. L. Comparison of different methods for determining the imidization degree of polyimide fibers. Chinese J. Polym. Sci. 2016, 34, 209–220.CrossRefGoogle Scholar
  42. 42.
    Snyder, R. W.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. C. FTIR studies of polyimides: Thermal curing. Macromolecules 1989, 22, 4166–4172.CrossRefGoogle Scholar
  43. 43.
    Xu, Y.; Zhang, Q. H. Two-dimensional Fourier transform infrared (FT-IR) correlation spectroscopy study of the imidization reaction from polyamic acid to polyimide. Appl. Spectrosc. 2014, 68, 657–662.CrossRefGoogle Scholar
  44. 44.
    Coburn, J. C.; Pottiger, M. T.; Noe, S. C.; Senturia, S. D. Stress in polyimide coatings. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 1271–1283.CrossRefGoogle Scholar
  45. 45.
    Russell, T. P.; Gugger, H.; Swalen, J. D. In-plane orientation of polyimide. J. Polym. Sci., Part B: Polym. Phys. 1983, 21, 1745–1756.Google Scholar
  46. 46.
    Eguchi, Y.; Unsal, E.; Cakmak, M. Critical phenomenon during drying of semiaromatic, transparent and soluble polyimide cast films: Real-time observation of birefringence and other integrated parameters. Macromolecules 2013, 46, 7488–7501.CrossRefGoogle Scholar
  47. 47.
    Chen, Y.; Zhang, Q. Y.; Sun, W. L.; Lei, X. F.; Yao, P. Synthesis and gas permeation properties of hyperbranched polyimides membranes from a novel (A2+B2B′+B2)-type method. J. Membr. Sci. 2014, 450, 138–146.CrossRefGoogle Scholar
  48. 48.
    Lei, X. F.; Qiao, M. T.; Tian, L. D.; Chen, Y. H.; Zhang, Q. Y. Tunable permittivity in high-performance hyperbranched polyimide films by adjusting backbone rigidity. J. Phys. Chem. C 2016, 120, 2548–2561.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Advanced Polymer Materials, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of ScienceBeijingChina
  4. 4.Department of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations