Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 1, pp 36–42 | Cite as

Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path

  • Wei Pan
  • Dong-Xiao Yin
  • Hai-Rong Jing
  • Hao-Jing Chang
  • Hao Wen
  • De-Hai Liang
Article
  • 29 Downloads

Abstract

The structure and kinetics of the complex formed by hyaluronic acid (HA) and poly(L-lysine) (PLL) were studied by time-resolved laser light scattering, TEM, and AFM. Because HA has a hydrophilic backbone, the complexes formed by HA and PLL are different from those formed by oppositely charged polyelectrolytes both having hydrophobic backbones. Instead of forming strong aggregates and even precipitates, the complex in the presence of excess HA is stable in the studied time period. More importantly, the complex spontaneously forms core-corona structure by the rearrangement of HA chains. The core is composed of complex rich of PLL and the corona is mainly HA. Further analysis shows that the hydrogen bond formed by HA creates a barrier hindering the further relaxation of HA chains. The automatic formation of core-corona structure by PLL/HA is helpful not only to understand the relaxation of polyelectrolyte in complex, but also to develop drug carriers with desirable properties.

Keywords

Polyelectrolyte complex Core-corona structure Hyaluronic acid Poly(L-lysine) Laser light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21574002).

Supplementary material

10118_2018_2166_MOESM1_ESM.pdf (287 kb)
Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path

References

  1. 1.
    Izumrudov, V. A.; Galaev, I. Y.; Mattiasson, B. Polyelectrolyte-potential for bioseparation. Bioseparation 1998, 7(4–5), 207–220.CrossRefGoogle Scholar
  2. 2.
    Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41(11), 2301–2324.CrossRefGoogle Scholar
  3. 3.
    Savage, N.; Diallo, M. S. Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 2005, 7(4–5), 331–342.CrossRefGoogle Scholar
  4. 4.
    Zhao, Q.; Zhang, P.; Antonietti, M.; Yuan, J. Poly(ionic liquid) complex with spontaneous micro-/mesoporosity: template-free synthesis and application as catalyst support. J. Am. Chem. Soc. 2012, 134(29), 11852–11855.CrossRefGoogle Scholar
  5. 5.
    Zheng, C.; Niu, L.; Yan, J. J.; Liu, J.; Luo, Y.; Liang, D. H. Structure and stability of the complex formed by oligonucleotides. Phys. Chem. Chem. Phys. 2012, 14(20), 7352–7359.CrossRefGoogle Scholar
  6. 6.
    Zhou, J. H.; Liu, J.; Shi, T.; Xia, Y. Q.; Luo, Y.; Liang, D. H. Phase separation of siRNA-polycation complex and its effect on transfection efficiency. Soft Matter 2013, 9(7), 2262–2268.CrossRefGoogle Scholar
  7. 7.
    Nomoto, T.; Fukushima, S.; Kumagai, M.; Machitani, K.; Arnida; Matsumoto, Y.; Oba, M.; Miyata, K.; Osada, K.; Nishiyama, N.; Kataoka, K. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat. Commun. 2014, 5, 3545.CrossRefGoogle Scholar
  8. 8.
    Zheng, C.; Niu, L.; Pan, W.; Zhou, J. H.; Lv, H.; Cheng, J. J.; Liang, D. H. Long-term kinetics of DNA interacting with polycations. Polymer 2014, 55(10), 2464–2471.CrossRefGoogle Scholar
  9. 9.
    Lee, Y.; Kataoka, K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 2009, 5(20), 3810–3817.CrossRefGoogle Scholar
  10. 10.
    Oh, K. T.; Bronich, T. K.; Bromberg, L.; Hatton, T. A.; Kabanov, A. V. Block ionomer complexes as prospective nanocontainers for drug delivery. J. Control. Release 2006, 115(1), 9–17.CrossRefGoogle Scholar
  11. 11.
    Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.CrossRefGoogle Scholar
  12. 12.
    Yue, Y.; Wu, C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 2013, 1(2), 152–170.CrossRefGoogle Scholar
  13. 13.
    Aliabadi, H. M.; Landry, B.; Sun, C.; Tang, T.; Uludag, H. Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials 2012, 33(8), 2546–2569.CrossRefGoogle Scholar
  14. 14.
    Zhou, J. H.; Wen, H.; Su, C. C.; Niu, L.; Liang, D. H. Complexation between DNA and peptides with precisely controlled charge density and distribution. Chinese J. Polym. Sci. 2014, 32(11), 1460–1468.CrossRefGoogle Scholar
  15. 15.
    Niu, L.; Yan, J. J.; Yang, X. Y.; Burger, C.; Rong, L. X.; Hsiao, B.; Liang, D. H. Complexation of DNA with cationic surfactants as studied by small-angle X-ray scattering. Sci. China Chem. 2014, 57(12), 1738–1745.CrossRefGoogle Scholar
  16. 16.
    Wen, H.; Yin, Y. D.; Huang, C.; Pan, W.; Liang, D. H. Encapsulation of RNA by negatively charged human serum albumin via physical interactions. Sci. China Chem. 2017, 60(1), 130–135.CrossRefGoogle Scholar
  17. 17.
    Gummel, J.; Cousin, F.; Boue, F. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J. Am. Chem. Soc. 2007, 129(18), 5806–5807.CrossRefGoogle Scholar
  18. 18.
    Ha, B. Y.; Liu, A. J. Counterion-mediated attraction between two like-charged rods. Phys. Rev. Lett. 1997, 79(7), 1289–1292.CrossRefGoogle Scholar
  19. 19.
    Ren, Y.; Jiang, X.; Pan, D.; Mao, H. Q. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules 2010, 11(12), 3432–3439.CrossRefGoogle Scholar
  20. 20.
    Zelikin, A. N.; Izumrudov, V. Polyelectrolyte complexes formed by calf thymus DNA and aliphatic ionenes: unexpected change in stability upon variation of chain length of ionenes of different charge density. Macromol. Biosci. 2002, 2(2), 78–81.CrossRefGoogle Scholar
  21. 21.
    Stoerkle, D.; Duschner, S.; Heimann, N.; Maskos, M.; Schmidt, M. Complex formation of DNA with oppositely charged polyelectrolytes of different chain topology: cylindrical brushes and, dendrimers. Macromolecules 2007, 40(22), 7998–8006.CrossRefGoogle Scholar
  22. 22.
    Izumrudov, V. A.; Wahlund, P. O.; Gustavsson, P. E.; Larsson, P. O.; Galaev, I. Y. Factors controlling phase separation in water-salt solutions of DNA and polycations. Langmuir 2003, 19(11), 4733–4739.CrossRefGoogle Scholar
  23. 23.
    Michaels, A. S.; Miekka, R. G. Polycation-polyanion complexes–preparation and properties of poly-(vinylbenzyltrimethylammonium) poly-(styrenesulfonate). J. Phys. Chem. 1961, 65(10), 1765–1773.CrossRefGoogle Scholar
  24. 24.
    Michaels, A. S. Polyelectrolyte complexes. Ind. Eng. Chem. 1965, 57(10), 32–40.CrossRefGoogle Scholar
  25. 25.
    Chen, J. H.; Heitmann, J. A.; Hubbe, M. A. Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids Surf. A 2003, 223(1–3), 215–230.Google Scholar
  26. 26.
    Chen, J. H.; Hubbe, M. A.; Heitmann, J. A.; Argyropoulos, D. S.; Rojas, O. J. Dependency of polyelectrolyte complex stoichiometry on the order of addition -2. Aluminum chloride and poly-vinylsulfate. Colloids Surf. A 2004, 246(1–3), 71–79.Google Scholar
  27. 27.
    Zhang, R.; Shklovskii, B. T. Phase diagram of solution of oppositely charged polyelectrolytes. Physica A 2005, 352(1), 216–238.CrossRefGoogle Scholar
  28. 28.
    Dias, R. S.; Linse, P.; Pais, A. A. C. C. Stepwise disproportionation in polyelectrolyte complexes. J. Comput. Chem. 2011, 32(12), 2697–2707.CrossRefGoogle Scholar
  29. 29.
    Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci. 2011, 167(1–2), 24–37.CrossRefGoogle Scholar
  30. 30.
    Su, C. C.; Zhao, M. T.; Zhu, Z. C.; Zhou, J. H.; Wen, H.; Yin, Y. D.; Deng, Y.; Qiu, D.; Li, B. H.; Liang, D. H. Effect of peptide charge distribution on the structure and kinetics of DNA complex. Macromolecules 2015, 48(3), 756–763.CrossRefGoogle Scholar
  31. 31.
    Fujii, T.; Sun, Y. L.; An, K. N.; Luo, Z. P. Mechanical properties of single hyaluronan molecules. J. Biomech. 2002, 35(4), 527–531.CrossRefGoogle Scholar
  32. 32.
    Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C. B.; Seed, B. CD44 is the principal cell-surface receptor for hyaluronate. Cell 1990, 61(7), 1303–1313.CrossRefGoogle Scholar
  33. 33.
    Brandrup, J.; Immergut, E. H.; Grulke, E. A. “Polymer handbook”, Wiley-Blackwell, New Jersey, 1999.Google Scholar
  34. 34.
    Zezin, A. B.; Kabanov, V. A. A new class of complex watersoluble polyelectrolytes. Russ. Chem. Rev. 1982, 51(9), 833–855.CrossRefGoogle Scholar
  35. 35.
    Schärtl, W. “Light scattering from polymer solutions and nanoparticle dispersions”, Springer-Verlag, Berlin, 2007.Google Scholar
  36. 36.
    Wu, C.; Zhou, S. Q. Laser-light scattering study of the phasetransition of poly(n-isopropylacrylamide) in water. 1. Singlechain. Macromolecules 1995, 28(24), 8381–8387.CrossRefGoogle Scholar
  37. 37.
    Wang, X. H.; Qiu, X. P.; Wu, C. Comparison of the coil-toglobule and the globule-to-coil transitions of a single poly(Nisopropylacrylamide) homopolymer chain in water. Macromolecules 1998, 31(9), 2972–2976.CrossRefGoogle Scholar
  38. 38.
    Wen, H.; Pan, W.; Zhou, J. H.; Li, Z. C.; Liang, D. H. Complete dissociation and reassembly behavior as studied by using poly(ethylene glycol)-block-poly(glutamate sodium) and kanamycin A. Soft Matter 2015, 11(10), 1930–1936.CrossRefGoogle Scholar
  39. 39.
    Voets, I. K.; de Keizer, A.; Stuart, M. A. C. Complex coacervate core micelles. Adv. Colloid Interface Sci. 2009, 147148, 300–318.CrossRefGoogle Scholar
  40. 40.
    Pergushov, D. V.; Mueller, A. H. E.; Schacher, F. H. Micellar interpolyelectrolyte complexes. Chem. Soc. Rev. 2012, 41(21), 6888–6901.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Pan
    • 1
  • Dong-Xiao Yin
    • 1
  • Hai-Rong Jing
    • 1
  • Hao-Jing Chang
    • 1
  • Hao Wen
    • 1
  • De-Hai Liang
    • 1
  1. 1.Beijing National Laboratory for Molecular Sciences and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations