Chinese Journal of Polymer Science

, Volume 36, Issue 7, pp 835–847 | Cite as

New Polymer Syntheses Part 60: A Facile Synthetic Route to Polyamides Based on Thieno[2,3-b]thiophene and Their Corrosion Inhibition Behavior

  • Kamal I. Aly
  • Amr H. Moustafa
  • Essam K. Ahmed
  • Hany M. Abd El-lateef
  • Mohamed Gamal Mohamed
  • Sahar M. Mohamed


Polyamides containing thieno[2,3-b]thiophene moiety were prepared via a simple polycondensation reaction of the diaminothieno[2,3-b]thiophene monomer 1a with different kinds of diacid chlorides (including oxalyl, adipoyl, sebacoyl, isophthaloyl, terephthaloyl, 4,4′-azodibenzoyl, 3,3′-azodibenzoyl, p-phenylene diacryloyl) in the presence of LiCl and NMP as a solvent through lowtemperature solution polycondensation. The chemical structures of model compound and synthesized polyamides were confirmed by FTIR, nuclear magnetic resonance spectroscopy (including 1H-NMR and 13C-NMR) and elemental analysis. In addition, the thermal stability, crystallinity structure and surface morphology of synthesized polyamides were characterized via thermogravametric analysis (TGA), wide-angle X-ray diffraction analysis (WAXD) and scanning electron microscopy (SEM). Also, the corrosion inhibition behavior of selected examples of polyamides was investigated; the inhibitive effect of the investigated polymers for carbon steel in 1.0 mol·L−1 HCl was studied using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) methods. PDP results displayed that the polyamides containing thieno[2,3-b]thiophene moiety can be as mixed-type inhibitors. The inhibition efficiency (P, %) was found to be in the range from 67.13% to 96.01%. There is an increase in P by the synthesized polymers in comparison to the starting monomer. The adsorption of these polymers was found to obey Langmuir adsorption isotherm.


Thieno[2,3-b]thiophene Polymer synthesis Thermal properties Industrial applications Corrosion inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2018_2101_MOESM1_ESM.pdf (3.5 mb)
New Polymer Syntheses Part 60*: A facile Synthetic Route to Polyamides-based on Thieno[2,3-b]thiophene and Their Corrosion Inhibition Behavior


  1. 1.
    Yang, H. H. “Aromatic high-strength fibers”, John Wiley & Sons, New York, 1989Google Scholar
  2. 2.
    Liou, G. S.; Yen, H. J. “Polyimides”, in: K. Matyjaszewski, M. Moller (eds.), “Polymer science: a comprehensive reference”, Elsevier Science, Amsterdam, 2012, P. 497–535Google Scholar
  3. 3.
    Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: synthesis, physical properties and application. Prog. Polym. Sci. 2012, 37, 907–974CrossRefGoogle Scholar
  4. 4.
    Hsiao, S. H.; Peng, S. C.; Kung, Y. R.; Leu, C. M.; Lee, T. M. Synthesis and electro-optical properties of aromatic polyamides and polyimides. Eur. Polym. J. 2015, 73, 50–60CrossRefGoogle Scholar
  5. 5.
    Levchik, S. V.; Weil, E. D. Combustion and fire retardancy of aliphatic nylons. Polym. Int. 2000, 49, 1033–1073CrossRefGoogle Scholar
  6. 6.
    Wang, Y. F.; Chen, T. M.; Li, Y. J.; Kitamura, M.; Sakurai, I.; Nakaya, T. Studies on syntheses and properties of novel polyamides containing phosphatidyl choline analogous moieties by interfacial polycondensation. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3065–3074CrossRefGoogle Scholar
  7. 7.
    Ferrero, E.; Espeso, J. F.; de La Campa, J. G.; De Abajo, J.; Lozano, A. E. Synthesis and characterization of aromatic polyamides containing alkylphthalimido pendent groups. J. Polym. Sci. A: Polym. Chem. 2002, 40, 3711–3724CrossRefGoogle Scholar
  8. 8.
    Chen, Y.; Wang, Q. Preparation, properties and characterization of halogen-free nitrogen-phosphorous flameretarded glass fiber reinforced polyamide 6 composite. Polym. Degrad. Stab. 2006, 91, 2003–2013CrossRefGoogle Scholar
  9. 9.
    Wang, Q.; Shi, W. Synthesis and thermal decomposition of a novel hyperbranched polyphosphate ester used for flame retardant system. Polym. Degrad. Stab. 2006, 91, 1289–1294CrossRefGoogle Scholar
  10. 10.
    Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. Synthesis and characterization of novel soluble triphenylaminecontaining aromatic polyamides based on W,W-bis(4-aminophenyl)-W,W-diphenyl-1,4-phynylene diamine. J. polym. Sci., Part A: Polym. Chem. 2002, 40, 2810–2818CrossRefGoogle Scholar
  11. 11.
    Chern, Y. T.; Wang, W. L. Synthesis and properties of new polyamides based on diamantine. Macromolecules 1995, 28, 5554–5560CrossRefGoogle Scholar
  12. 12.
    Liou, G. S.; Oishi, Y.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2′-bibenzoic acid and aromatic diamines. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 995–1000CrossRefGoogle Scholar
  13. 13.
    Cimecioglu, A. L.; Weiss, R. A. Synthesis and properties of polyamides of 3,3′-dimethyl naphthidine and its model compounds. J. Polym. Sci. Part A.: Polym. Chem. 1992, 30, 1051–1060CrossRefGoogle Scholar
  14. 14.
    Yang, C. P.; Lin, J. H. Preparation and properties of aromatic polyamides and polyimides derived from 3,3-bis[4-(4-amino phenoxy)phenyl]phthalide. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 423–433CrossRefGoogle Scholar
  15. 15.
    Jadhav, J. Y.; Preston, J.; Krigbaum, W. R. Aromatic rigid chain copolymers. 1. Synthesis, structure and solubility of phenyl-substituted para-linked aromatic random copolyamides. J. Polym. Sci. Part A: Polym. Chem. 1989, 27, 1175–1195Google Scholar
  16. 16.
    Delaviz, Y.; Gungor, A.; MacGrath, J. E.; Gibson, H. W. Soluble phosphine oxide containing aromatic polyamides. Polymer 1993, 34, 210–213CrossRefGoogle Scholar
  17. 17.
    Takayangi, M.; Katoyse, T. n-substituted poly(p-phenylene terephthalamide). J. Polym. Sci. Part A: Polym. Chem. 1981, 19, 1133–1145Google Scholar
  18. 18.
    Itamura, S.; Yamada, M.; Tamura, S.; Matsumoto, T.; Kurosaki, T. Soluble polyimides with polyalicyclic structure. 1.Polyimides from bicyclo [2.2.2]oct-7-ene-2-exo,3-exo,5-exo,6-exo-tetracarboxylic 2,3:5,6-dianhydrides. Macromolecules 1993, 26, 3490–3493CrossRefGoogle Scholar
  19. 19.
    Bottino, F. A.; Pasquale, G. D.; Pollicino, A.; Scalia, L. Synthesis and characterization of new polyamides containing 6,6′ methylenediquinoline units. Polymer 1998, 39(20), 4949–4954CrossRefGoogle Scholar
  20. 20.
    Morgan, P. "Condensation polymers by interfacial and solution method", John Wiley & Sons, New York, 1965Google Scholar
  21. 21.
    Morgan, P. W.; Kwolek, S. L. Polyamides from phenylenediamines and aliphatic diacids. Macromolecules 1975, 8(2), 104–111CrossRefGoogle Scholar
  22. 22.
    Aly, K. I.; Hussein, M. A. Synthesis, characterization and corrosion inhibitive properties of new thiazole based polyamides containing diarylidenecyclohexanone moiety. Chinese J. Polym. Sci. 2015, 33(1), 1–13CrossRefGoogle Scholar
  23. 23.
    Liou, G. S.; Maruyama, M.; Kakimoto, M. A.; Imai, Y. Preparation and properties of aromatic polyamides from 2,2′-bis(p-aminophenoxy) biphenyl or 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl and aromatic dicarboxylic acids. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 2499–2506CrossRefGoogle Scholar
  24. 24.
    Park, S. H.; Lee, J. W.; Suh, D. H.; Ju, S. Y. Synthesis and characteristics of novel polyamides having pendent V-phenyl imide groups. J. Macromol. Sci. A: Pure Appl. Chem. 2001, 38, 513–525CrossRefGoogle Scholar
  25. 25.
    Sarjadi, M. S.; Yi, H.; Iraqi, A.; Lidzey, D. G. Theinothiophene units properties on the carbazole-based polymers for organic solar cell devices. Malaysian J. Analyt. Sci. 2015, 19(6), 1205–1217Google Scholar
  26. 26.
    Diez, A. S.; Saidman, S.; Garay, R. O. Synthesis of a theinothiophene conjugated polymer. Molecules 2000, 5(3), 555–556CrossRefGoogle Scholar
  27. 27.
    Aly, K. I.; Abdel Rahman, M. A.; Hussein, M. A. New polymer syntheses Part 53. Novel polyamides of diarylidenecycloalkanone containing azo groups in the polymer backbone: synthesis and characterization. Int. J. Polym. Mater. 2010, 59, 553–569Google Scholar
  28. 28.
    Chao, D.; He, L.; Berda, E. B.; Wang, S.; Jia, X.; Wang, C. Multifunction hyperbranched polyamide: synthesis and properties. Polymer 2013, 54, 3223–3229CrossRefGoogle Scholar
  29. 29.
    Faghihi, K. New polyamides based on bis (p-amidobenzoic acid)-p-phenylene diacrylic acid and hydantoin derivatives: synthesis and characterization. Turk. J. Chem. 2008, 32, 75–86Google Scholar
  30. 30.
    Bair, T. I.; Morgan, P. W.; Killian, F. L. Poly(1,4-phenyleneterephthalamides). polymerization and novel liquidcrystalline solutions. Macromolecules 1977, 10(6), 1396–1400CrossRefGoogle Scholar
  31. 31.
    Vogel, A. I. “Vogel’s textbook of practical organic Chemistry”. London, Longman Green 1, 1967, ppp. 464Google Scholar
  32. 32.
    Aly, K. I. New polymer syntheses XXVIII. Synthesis and thermal behavior of new organometallic polyketones and copolyketones based on diferrocenylidenecyclohexanone. J. Appl. Polym. Sci. 2004, 94, 1440–1448Google Scholar
  33. 33.
    Aly, K. I.; Kandeel, M. M. New Polymer Syntheses IV. Synthesis and characterization of new polyamides containing bis-benzthiazolyl sulphone units in the main chain. High perform. Polym. 1996, 8, 307–314Google Scholar
  34. 34.
    El-Shafei, A. K.; Abdel-Ghany, H. A.; Sultan, A. A.; El-Saghier, A. M. M. Synthesis of thieno (2,3-b) thiophene and related structures. Phosphorus, Sulfur, Silicon Relat. Elem. 1992, 73, 15–25CrossRefGoogle Scholar
  35. 35.
    Comel, A.; Kirsch, G. Efficient one pot preparation of variously substituted thieno[2,3-6]thiophene. J. Heterocycl. Chem. 2001, 38, 1167–1171CrossRefGoogle Scholar
  36. 36.
    Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the V-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci., Part A: Polym. Chem. 1975, 13, 1373–1380Google Scholar
  37. 37.
    Holmer, D. A.; Pickett, O. A.; Saunders, J. H. Melt polycondensation of 4,4′-diaminodiphenylmethane with aliphatic dibasic acids. J. Polym. Sci., Part A: Polym. Chem. 1972, 10, 1547–1552CrossRefGoogle Scholar
  38. 38.
    Li, C. H.; Chang, T. C. Studies on thermotropic liquid crystalline polymers Part II. Synthesis and properties of poly (azomethine-ether). Eur. Polym. J. 1991, 27(1), 35–39Google Scholar
  39. 39.
    Yang, R. X.; Wang, T. T.; Deng, W. Q. Extraordinary capability for water treatment achieved by a perfluorous conjugated microporous polymer. Sci. Rep. 2015Google Scholar
  40. 40.
    Aly, K. I. New polymer syntheses VIII. Synthesis, characterization and morphology of new unsaturated copolyesters based on dibenzylidenecycloalkanones. Polym. Int. 1998, 47, 483–490CrossRefGoogle Scholar
  41. 41.
    Kim, S.; Pearce, E. M.; Kwei, T. K. Synthesis and degradation of cyano-containing aramids. Polym. Adv. Technol. 1990, 1, 49–73CrossRefGoogle Scholar
  42. 42.
    El-Sayed, A. R.; Shaker, A. M.; Abd El-Lateef, H. M. Corrosion inhibition of tin, indium and tin-indium alloys by adenine or adenosine in hydrochloric acid solution. Corros. Sci. 2010, 52, 72–81CrossRefGoogle Scholar
  43. 43.
    Abd El-Lateef, H. M. Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid Solutions. Corros. Sci. 2015, 92, 104–117CrossRefGoogle Scholar
  44. 44.
    Al-Sabagh, A. M.; Nasser, N. M.; El-Azabawy, O. E.; El-Tabey, A. E. Corrosion inhibition behavior of new synthesized nonionic surfactants based on amino acid on carbon steel in acid media. J. Mol. Liq. 2016, 219, 1078–1088CrossRefGoogle Scholar
  45. 45.
    Kosari, A.; Moayed, M. H.; Davoodi, A.; Parvizi, R.; Momeni, M.; Eshghi, H.; Moradi, H. Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci. 2014, 78, 138–150CrossRefGoogle Scholar
  46. 46.
    Yadav, D. K.; Quraishi, M. A. Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res. 2012, 51, 8194–8210CrossRefGoogle Scholar
  47. 47.
    Morad, M. S. Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids. J. Appl. Electrochem. 2008, 38, 1509–1518CrossRefGoogle Scholar
  48. 48.
    Abd El-Lateef, H. M.; Abu-Dief, A. M.; El-Gendy, B. E. M. Investigation of adsorption and inhibition effects of some novel compounds towards mild steel in H2SO4 solution: Electrochemical and theoretical quantum studies. J. Electroanal. Chem. 2015, 758, 135–147CrossRefGoogle Scholar
  49. 49.
    Abd El-Lateef, H. M.; Abu-Dief, A. M.; Abdel-Rahman, L. H.; Sanudo, E. C.; Aliaga-Alcalde, N. Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J. Electroanal. Chem. 2015, 743, 120–133CrossRefGoogle Scholar
  50. 50.
    Mazumder, M. A. J.; Nazal, M. K.; Faiz, M.; Ali, Sh. A. Midazolines containing single-, twin-and triple-tailed hydrophobes and hydrophilic pendants (CH2CH2NH)« as inhibitors of mild steel corrosion in CO2-0.5 M NaCl. RSC Adv. 2016, 6, 12348–12362CrossRefGoogle Scholar
  51. 51.
    Ansari, K. R.; Quraishi, M. A. Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4. Corros. Sci. 2015, 95, 62–70CrossRefGoogle Scholar
  52. 52.
    Atta, A. M.; El-Azabawy, O. E.; Ismail, H. S.; Hegazy, M. A. Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium. Corros. Sci. 2011, 53, 1680–1689CrossRefGoogle Scholar
  53. 53.
    Prabhu, R. A.; Venkatesha, T. V.; Shanbhag, A. V.; Kulkarni, G. M.; Kalkhambkar, R. G. Inhibition effects of some Schiffs bases on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 2008, 50, 3356–3362CrossRefGoogle Scholar
  54. 54.
    Elayyachy, M.; El Idrissi, A.; Hammouti, B. New thiocompounds as corrosion inhibitor for steel in 1 M HCl. Corros. Sci. 2006, 48, 2470–2479CrossRefGoogle Scholar
  55. 55.
    Singh, A.; Lin, Y.; Obot, I. B.; Ebenso, E. E.; Ansari, K. R.; Quraishi, M. A. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor. Appl. Surf. Sci. 2015, 356, 341–347CrossRefGoogle Scholar
  56. 56.
    Roy, P.; Karfa, P.; Adhikar, U.; Sukul, D. Corrosion inhibition of mild steel in acidic medium by Polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism. Corros. Sci. 2014, 88, 246–253CrossRefGoogle Scholar
  57. 57.
    Gopi, D.; Karthikeyana, P.; Kavithac, L.; Surendiran, M. Development of poly (3,4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel for enhanced corrosion resistance in the sulphuric acid medium. Appl. Surf. Sci. 2015, 357, 122–130CrossRefGoogle Scholar
  58. 58.
    Abd El-Lateef, H. M.; Tantawy, A. H. Synthesis and evaluation of novel series of Schiff base cationic surfactants as corrosion inhibitors for carbon steel in acidic/chloride media. RSC Adv. 2016, 6, 8681–8700CrossRefGoogle Scholar
  59. 59.
    Abd El-Lateef, H. M.; Tantawy, A. H.; Abdelhamid, A. A. Novel quaternary ammonium-based cationic surfactants: Synthesis, surface activity and evalution as corrosion inhibitors for C1018 carbon steel in acidic chloride solution. J. Surfact. Deterg. 2017, 20, 735–753CrossRefGoogle Scholar
  60. 60.
    Abd El-Lateef, H. M.; Soliman, K. A.; Tantawy, A. H. Novel synthesized Schiff base-based cationic Gemini surfactants: Electrochemical investigation, theoretical modeling and applicability as biodegradable inhibitors for mild steel against acidic corrosion. J. Mol. Liq. 2017, 232, 478–498CrossRefGoogle Scholar
  61. 61.
    Abd El-Lateef, H. M.; Elremaily, M. A. A. Divinyl sulfone cross-linked β-cyclodextrin polymer as new and effective corrosion inhibitor for Zn anode in 3.5 M KOH. Trans. Indian Inst. Met. 2016, 69(9), 1783–1792.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kamal I. Aly
    • 1
  • Amr H. Moustafa
    • 2
  • Essam K. Ahmed
    • 3
  • Hany M. Abd El-lateef
    • 4
  • Mohamed Gamal Mohamed
    • 1
  • Sahar M. Mohamed
    • 3
  1. 1.Polymer Research Lab, Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Chemistry Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Chemistry Department, Faculty of ScienceMinia UniversityEl-MiniaEgypt
  4. 4.Chemistry Department, College of ScienceKing Faisal university, Al HufufAl HassaSaudi Arabia

Personalised recommendations