Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 649–654 | Cite as

A Low Temperature Vulcanized Transparent Silane Modified Epoxy Resins for LED Filament Bulb Package

Article
  • 19 Downloads

Abstract

In this work, low-temperature vulcanized, transparent silane modified epoxy resins for LED filament bulb package were prepared. Firstly, transparent silane modified epoxy resins were produced through a controllable sol-gel method using γ-(2,3-epoxypropoxy)propytrimethoxysilane and dimethyldiethoxylsilane. The features of the reaction were investigated and the products were characterized in detail. Subsequently, various curing agents were explored to prepare transparent silane modified epoxy resins. The silane modified epoxy resins cured by PEA-230 at a fairly low temperature (40 °C/2 h then 60 °C/1 h) exhibited excellent thermal stability with a thermal degradation temperature as high as 316.5 °C and adjustable hardness between 40−60 shore A. The application tests showed the materials obtained were good candidates for LED filament bulb package.

Keywords

Silane modified epoxy resins LED filament bulb Package materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful for financial support from the Zhejiang Provincial Natural Science Foundation of China (No. Y14E030008), the Commonweal Technology Application Research Project of Zhejiang Province (No. 2013C31079).

Supplementary material

10118_2018_2028_MOESM1_ESM.pdf (323 kb)
A Low Temperature Vulcanized Transparent Silane Modified Epoxy Resins for LED Filament Bulb Package

References

  1. 1.
    Yang, S. C.; Kim, J. S.; Jin, J. H.; Kwak, S. Y.; Bae, B. S. Thermal resistance of cycloaliphatic epoxy hybrimer based on sol-gel derived oligosiloxane for LED encapsulation. J. Appl. Polym. Sci. 2010, 117(4), 2140–2145.CrossRefGoogle Scholar
  2. 2.
    Yang, X. F.; Shao, Q.; Yang, L. L.; Zhu, X. B.; Hua, X. L.; Zheng, Q. L.; Song, G. X.; Lai, G. Q. Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes. J. Appl. Polym. Sci. 2013, 127(127), 1717–1724.CrossRefGoogle Scholar
  3. 3.
    Yang, X. F.; Yang, L. L.; Cao, C.; Zhu, X. B.; Hua, X. L.; Zheng, Q. L.; Song, G. X.; Wu, L. B.; Lai, G. Q. Preparation of a silicone resin-type packaging material with high refractive index for light emitting diodes. Chem. J. Chin. Univ. 2012, 33(5), 1078–1083.Google Scholar
  4. 4.
    Huang, J. C.; Chu, Y. P.; Wei, M.; Deanin, R. D. Comparison of epoxy resins for applications in light-emitting diodes. Adv. Polym. Technol. 2004, 23(4), 298–306.CrossRefGoogle Scholar
  5. 5.
    Bu, Z. Y.; Hu, J. J.; Li, B. G. Novel silicon-modified phenolic novolac resins: non-isothermal curing kinetics, and mechanical and thermal properties of their biofiber-reinforced composites. Thermochimica Acta 2014, 575(1), 244–253.CrossRefGoogle Scholar
  6. 6.
    Kumar, R. N.; Keem, L. Y.; Mang, N. C.; Abubakar, A. Ultraviolet radiation curable epoxy resin encapsulant for light emitting diodes. J. Appl. Polym. Sci. 2006, 100(2), 1048–1056.CrossRefGoogle Scholar
  7. 7.
    Zhang, Y. H.; Rhee, K. Y.; Park, S. J. Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability. Compos. Part B: Engineer. 2017, 114, 111–120.CrossRefGoogle Scholar
  8. 8.
    Yang, S. C.; Kwak, S. Y.; Jin, J. H.; Kim, J. S.; Choi, Y. W.; Paik, K. W.; Bae, B. S. Thermally resistant UV-curable epoxysiloxane hybrid materials for light emitting diode (LED) encapsulation, J. Mater. Chem. 2012, 22(18), 8874–8880.Google Scholar
  9. 9.
    Kim, J. S.; Yang, S. C.; Kwak, S. Y.; Choi, Y. W.; Paik, K. W.; Bae, B. S. High performance encapsulant for light-emitting diodes (LEDs) by a sol-gel derived hydrogen siloxane hybrid. J. Mater. Chem. 2012, 22(16), 7954–7960.CrossRefGoogle Scholar
  10. 10.
    Kim, J. S.; Yang, S. C.; Bae, B. S. Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation. Chem. Mater. 2010, 22(11), 3549–3555.CrossRefGoogle Scholar
  11. 11.
    Rath, S. K.; Chavan, J. G.; Sasane, S.; Srivastava, A.; Patri, M.; Samui, A. B.; Chakraborty, B. C.; Sawant, S. N. Coatings of PDMS-modified epoxy via urethane linkage: Segmental correlation length, phase morphology, thermomechanical and surface behavior. Prog. Org. Coat. 2009, 65(3), 366–374.CrossRefGoogle Scholar
  12. 12.
    Huang, S. S.; Zhou, W. C.; Luo, F.; Zhu, D. M. Mechanical and dielectric properties of short-carbon-fibers/epoxy-modifiedorganic- silicone-resin as heat resistant microwave absorbing coatings. J. Appl. Polym. Sci. 2013, 130(130), 1392–1398.CrossRefGoogle Scholar
  13. 13.
    Sobhani, S.; Jannesari, A.; Bastani, S. Effect of molecular weight and content of PDMS on morphology and properties of silicone-modified epoxy resin. J. Appl. Polym. Sci., 2012, 123(1), 162–178.CrossRefGoogle Scholar
  14. 14.
    Ahmad, S.; Ashraf, S. M.; Sharmin, E.; Mohomad, A.; Alam, M. Synthesis, formulation, and characterization of siloxanemodified epoxy-based anticorrosive paints. J. Appl. Polym. Sci. 2006, 100(100), 4981–4991.CrossRefGoogle Scholar
  15. 15.
    Kumar, S. A.; Balakrishnan, T.; Alagar, M.; Denchev, Z. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings. Prog. Org. Coat. 2006, 55(3), 207–217.CrossRefGoogle Scholar
  16. 16.
    Ahmad, S.; Gupta, A. P.; Sharmin, E.; Alam, M.; Pandey, S. K. Synthesis, characterization and development of high performance siloxane-modified epoxy paints. Prog. Org. Coat. 2005, 54(3), 248–255.CrossRefGoogle Scholar
  17. 17.
    Wu, Q.; Zhang, C.; Liang, R.; Wang, B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J. Therm. Anal. Calorim., 2010, 100(3), 1009–1015.CrossRefGoogle Scholar
  18. 18.
    Zhang, D. H.; Liang, E. B.; Li, T. C.; Chen, S. F.; Zhang, J. H.; Cheng, X. J.; Zhou, J. L.; Zhang, A. Q.. Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton. RSC Adv. 2013, 3(9), 3095–3102.Google Scholar
  19. 19.
    Zhang, D. H.; Liang, E. B.; Li, T. C.; Chen, S. F.; Zhang, J. H.; Cheng, X. J.; Zhou, J. L.; Zhang, A. Q. The effect of molecular weight of hyperbranched epoxy resins with a silicone skeleton on performance. RSC Adv. 2013, 3(24), 9522–9529.CrossRefGoogle Scholar
  20. 20.
    ASTM E313-10: Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. ASTM, Book Standards 2010, 6, pp6. DOI: 10.1520/E0313–10Google Scholar
  21. 21.
    Zhang, Y. H.; Choi, J. R.; Park, S. J. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics, Compos. Part A: Appl. Sci. Manufactur. 2017, 101, 227–236CrossRefGoogle Scholar
  22. 22.
    Zhu, J.; Peng, H.; F. Rodriguez-Macias; Margrave J. L.; Khabashesku V. N.; Imam A.; Lozano K.; Barrera E. V. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv. Funct. Mater. 2004, 14(7), 643–648.CrossRefGoogle Scholar
  23. 23.
    Zhang, Y. H.; Park, S. J. In situ modification of nanodiamonds by mercapto-terminated silane agent for enhancing the mechanical interfacial properties of nitrile butadiene rubber nanocomposites. Polym. Comps. 2017, DOI: 10.1002/pc.24367Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal UniversityHangzhouChina
  2. 2.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations