Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 675–682 | Cite as

Kinetics Analysis on the Polycondensation Process of Poly(p-phenylene terephthalamide): Experimental Verification and Molecular Simulation

Article
  • 26 Downloads

Abstract

The conventional low-temperature method of solution polycondensation was developed to realize the reaction of p-phenylenediamin and terephthaloyl chloride for the preparation of poly(p-phenylene terephthalamide) (PPTA). Some main factors influencing this process were investigated to determine the optimum condition for high molecular weight. Experiment showed significant slowing of the reaction and gradual deviation of second-order reaction kinetics due to diffusion control. These phenomena were studied theoretically via dynamic Monte Carlo simulation. A concise expression, n ~ c0-0.88·t0.37, was proposed to describe the diffusioncontrolled polycondensation process as a function of the monomer concentration and reaction time. The theoretical results provided a good description of diffusion-effected kinetics for the polycondensation process of PPTA, and demonstrated good agreement with the experimental data. Some differences of scaling relations between model and experiment results were also discussed.

Keywords

Poly(p-phenylene terephthalamide) Molecular weight Reaction kinetics Molecular simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21204011, 51603120 and 21404023), the National Basic Research Program of the China 973 Program (No. 2011CB606101), Fundamental Research Funds for the Central Universities, Innovation Program of Shanghai Science and Technology Commission (No. 14521100605) and the Innovation Program of Shanghai Municipal Education Commission.

References

  1. 1.
    Rao, Y.; Waddon, A.; Farris, R. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer 2001, 42(13), 5937–5946.CrossRefGoogle Scholar
  2. 2.
    Mark, H.; Atlas, S.; Ogata, N. Aromatic polyamide. J. Polym. Sci. 1962, 61(172), 49–53.CrossRefGoogle Scholar
  3. 3.
    Anagnostopoulos, G.; Parthenios, J.; Galiotis, C. Thermal stress development in fibrous composites. Mater. Lett. 2008, 62(3), 341–345.CrossRefGoogle Scholar
  4. 4.
    Knijnenberg, A.; Bos, J.; Dingemans, T. J. The synthesis and characterisation of reactive poly(p-phenylene terephthalamide)s: a route towards compression stable aramid fibres. Polymer 2010, 51(9), 1887–1897.CrossRefGoogle Scholar
  5. 5.
    Rao, Y.; Waddon, A.; Farris, R. The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers. Polymer 2001, 42(13), 5925–5935.CrossRefGoogle Scholar
  6. 6.
    Du, S.; Wang, W.; Yan, Y.; Zhang, J.; Tian, M.; Zhang, L.; Wan, X. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups. Chem. Commun. 2014, 50(69), 9929–9931.CrossRefGoogle Scholar
  7. 7.
    Du, S.; Zhang, J.; Guan, Y.; Wan, X. Sequence effects on properties of the poly(p-phenylene terephthalamide)-based macroinitiators and their comb-like copolymers grafted by polystyrene side chains. Aust. J. Chem. 2014, 67(1), 39–48.CrossRefGoogle Scholar
  8. 8.
    Schwartz, P. A review of recent experimental results concerning the strength and time dependent behavior of fibrous poly(paraphenylene terephthalamide). Polym. Eng. Sci. 1987, 27(11), 842–847.CrossRefGoogle Scholar
  9. 9.
    Perepelkin, K. E.; Machalaba, N. N. Recent achievements in structure ordering and control of properties of para-aramide fibres. Mol. Cryst. Liq. Cryst. 2000, 353(1), 275–286.CrossRefGoogle Scholar
  10. 10.
    Sun, L.; Xu, J.; Luo, W.; Guo, C.; Tuo, X.; Wang, X. Investigation on the preparation of high molecular weight poly(p-phenylene terephthalamide) using CaH2 as acid absorbent. Acta Polymerica Sinica (in Chinese) 2012, (1), 70–74.CrossRefGoogle Scholar
  11. 11.
    Wang, S.; Liu, H.; Xiao, R. Determination of condensationpolymerization thermal effect of poly(paraphenylenetere-phalamide). Journal of DongHua University (in Chinese). 1984, 1, 41–46.Google Scholar
  12. 12.
    Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100(1), 791–802.CrossRefGoogle Scholar
  13. 13.
    Flory, P. J., Principles of polymer chemistry, Cornell University Press, New York, 1953, p. 317.Google Scholar
  14. 14.
    Cotts, D. B.; Berry, G. C. Polymerization kinetics of rigid rodlike molecules: polycondensation of poly([benzo (1,2-d:5,4-d') bisoxazole-2,6-diyl]-1,4-phenylene). Macromolecyles 1981, 14(4), 930–934CrossRefGoogle Scholar
  15. 15.
    Agarwal, U.; Khakhar, D. Enhancement of polymerization rates for rigid rod-like molecules by shearing. Nature 1992, 360, 53–55.CrossRefGoogle Scholar
  16. 16.
    Agarwal, U.; Khakhar, D. Diffusion-limited polymerization of rigid rodlike molecules: dilute solutions. J. Chem. Phys. 1992, 96(9), 7125–7134.CrossRefGoogle Scholar
  17. 17.
    Agarwal, U.; Khakhar, D. Shear flow induced orientation development during homogeneous solution polymerization of rigid rodlike molecules. Macromolecules 1993, 26(15), 3960–3965.CrossRefGoogle Scholar
  18. 18.
    Agarwal, U.; Khakhar, D. Simulation of diffusion-limited step-growth polymerization in 2D: effect of shear flow and chain rigidity. J. Chem. Phys. 1993, 99(4), 3067–3074.CrossRefGoogle Scholar
  19. 19.
    Agarwal, U.; Khakhar, D. Diffusion-limited polymerization of rigid rodlike molecules: semidilute solutions. J. Chem. Phys. 1993, 99(2), 1382–1392.CrossRefGoogle Scholar
  20. 20.
    Arpin, M.; Strazielle, C. Characterization and conformation of aromatic polyamides: poly(1,4-phenylene terephthalamide) and poly(p-benzamide) in sulphuric acid. Polymer 1977, 18(6), 591–598.CrossRefGoogle Scholar
  21. 21.
    Bair, T.; Morgan, P.; Killian, F. Poly(1,4-phenyleneterephthalamides). polymerization and novel liquid-crystalline solutions. Macromolecules 1977, 10(6), 1396–1400.Google Scholar
  22. 22.
    Gupta, J. S.; Agge, A.; Khakhar, D. Polymerization kinetics of rodlike molecules under quiescent conditions. AlChE J. 2001, 47(1), 177–186.CrossRefGoogle Scholar
  23. 23.
    Bao, J. S.; You, A. J.; Zhang, S. Q.; Zhang, S. A.; Hu, C. Studies on the semirigid chain polyamide-poly(1,4-phenyleneterephthalamide). J. Appl. Polym. Sci. 1981, 26(4), 1211–1220.CrossRefGoogle Scholar
  24. 24.
    Doi, M.; Edwards, S. F., The theory of polymer dynamics, Oxford University Press, New York, 1988, p. 295.Google Scholar
  25. 25.
    Tracy, M.; Pecora, R. Dynamics of rigid and semirigid rodlike polymers. Annu. Rev. Phys. Chem. 1992, 43(1), 525–557.CrossRefGoogle Scholar
  26. 26.
    Doi, M. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci., Part B 1981, 19, 229–243.Google Scholar
  27. 27.
    Teraoka, I.; Hayakawa, R. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation. I. transverse diffusion. J. Chem. Phys. 1988, 89(11), 6989–6995.CrossRefGoogle Scholar
  28. 28.
    Teraoka, I.; Hayakawa, R. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation. II. rotational diffusion. J. Chem. Phys. 1989, 91(4), 2643–2648.Google Scholar
  29. 29.
    Agge, A.; Jain, S.; Khakhar, D. Acceleration of the polymerization of rodlike molecules by flow. J. Am. Chem. Soc. 2000, 122(44), 10910–10913.CrossRefGoogle Scholar
  30. 30.
    Jain, S.; Agge, A.; Khakhar, D. Flow enhanced diffusion-limited polymerization of rodlike molecules. J. Chem. Phys. 2001, 114(1), 553–560.CrossRefGoogle Scholar
  31. 31.
    Zhang, R.; Kong, H. J.; Zhong, H. P.; Liu, J.; Zhou, J. J.; Teng, C. Q.; Ma, Y.; Yu, M. H. N-Alkyl PPTA: preparation and characterization. Adv. Mater. Res. 2012, 554, 105–109.Google Scholar
  32. 32.
    Fitzer, E.; Müller, D. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon 1975, 13(1), 63–69.CrossRefGoogle Scholar
  33. 33.
    Liu, J.; Ma, Y.; Wu, R.; Yu, M. Molecular simulation of diffusion-controlled kinetics in stepwise polymerization. Polymer 2016, 97, 335–345.CrossRefGoogle Scholar
  34. 34.
    Atkins, P.; Paula, D. J. Physical Chemistry, W. H. Freeman & Company, New York, 2006, p. 807.Google Scholar
  35. 35.
    Wang, S.; Liu, H.; Xiao, R. Determination of condensationpolymerization thermal effect of poly(paraphenyleneterephalamide). Journal of DongHua. University 1984, 1, 41–46.Google Scholar
  36. 36.
    Northolt, M. X-ray diffraction study of poly(p-phenylene terephthalamide) fibres. Eur. Polym. J. 1974, 10(9), 799–804.CrossRefGoogle Scholar
  37. 37.
    Northolt, M.; van Aartsen, J. On the crystal and molecular structure of poly-(p-phenylene terephthalamide). J. Polym. Sci., Part C: Polym. Lett. 1973, 11(5), 333–337.Google Scholar
  38. 38.
    Bu, Z.; Russo, P. S.; Tipton, D. L.; Negulescu, I. I. Self-diffusion of rodlike polymers in isotropic solutions. Macromolecules 1994, 27(23), 6871–6882.CrossRefGoogle Scholar
  39. 39.
    Wang, P.; Wang, K.; Zhang, J. Non-aqueous suspension polycondensation in NMP-CaCl2/paraffin system-A new approach for the preparation of poly(p-phenylene terephthalamide). Chinese J. Polym. Sci. 2015, 33(4), 564–575.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.Key Laboratory of Shanghai City for Lightweight Composites, State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghaiChina
  3. 3.School of Materials EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations