In-memory transaction processing: efficiency and scalability considerations

  • Huiqi HuEmail author
  • Xuan Zhou
  • Tao Zhu
  • Weining Qian
  • Aoying Zhou
Survey Paper


Traditional disk-resident OLTP systems were mainly designed for computers with relatively small memory. Driven by the advance of hardware, OLTP systems need to be redesigned for larger memory and multi-core environments. Compared to disk-resident systems, in-memory systems have significant performance advantages, from the perspectives of both transaction throughput and query latency. Their performance is no longer limited by disk I/Os. Instead, the efficiency and scalability over multi-core CPUs become more important. In this paper, we survey and summarize a wide spectrum of design and implementation considerations that may affect the efficiency or scalability of an in-memory OLTP system. These considerations are concerned with most of the main components of databases, including concurrency control, logging, indexing and transaction compilation. For each of the components, we provide some in-depth analysis based on recent research works. This survey also aims to provide some guidance for designing or implementing high-performance in-memory OLTP systems.


Database system Transaction processing In-memory database Concurrency control 



This work is supported by National Science Foundation of China under Grant Numbers 61702189, 61672232, 61772202 and Youth Science and Technology - Yang Fan Program of Shanghai under Grant Number 17YF1427800.


  1. 1.
    Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P (1992) Aries: a transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. TODS 17(1):94–162CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Färber F, Cha SK, Primsch J, Bornhövd C, Sigg S, Lehner W (2012) SAP HANA database: data management for modern business applications. SIGMOD Rec 40(4):45–51CrossRefGoogle Scholar
  4. 4.
    Lee J, Kwon YS, Färber F, Muehle M, Lee C, Bensberg C, Lee JY, Lee AH, Lehner W (2013) SAP HANA distributed in-memory database system: transaction, session, and metadata management. In: ICDE. IEEE, pp 1165–1173Google Scholar
  5. 5.
    Stonebraker M, Weisberg A (2013) The VoltDB main memory DBMS. IEEE Data Eng Bull 36(2):21–27Google Scholar
  6. 6.
    Kemper A, Neumann T (2011) Hyper: a hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. In: ICDE. IEEE, pp 195–206Google Scholar
  7. 7.
    Faerber F, Kemper A, Larson P-Å, Levandoski J, Neumann T, Pavlo A et al (2017) Main memory database systems. Found Trends Databases 8(1–2):1–130CrossRefGoogle Scholar
  8. 8.
    Zhang H, Chen G, Ooi BC, Tan K-L, Zhang M (2015) In-memory big data management and processing: a survey. IEEE Trans Knowl Data Eng 27(7):1920–1948CrossRefGoogle Scholar
  9. 9.
    Kung H-T, Robinson JT (1981) On optimistic methods for concurrency control. TODS 6(2):213–226CrossRefGoogle Scholar
  10. 10.
    Tu S, Zheng W, Kohler E, Liskov B, Madden S (2013) Speedy transactions in multicore in-memory databases. In: SOSP. ACM, pp 18–32Google Scholar
  11. 11.
    Diaconu C, Freedman C, Ismert E, Larson P-A, Mittal P, Stonecipher R, Verma N, Zwilling M (2013) Hekaton: SQL server’s memory-optimized OLTP engine. In: SIGMOD. ACM, pp 1243–1254Google Scholar
  12. 12.
    Larson P-Å, Blanas S, Diaconu C, Freedman C, Patel JM, Zwilling M (2011) High-performance concurrency control mechanisms for main-memory databases. Proc VLDB Endow 5(4):298–309CrossRefGoogle Scholar
  13. 13.
    Yu X, Pavlo A, Sanchez D, Devadas S (2016) TicToc: time traveling optimistic concurrency control. In: SIGMOD, vol 8, pp 209–220Google Scholar
  14. 14.
    Wu Y, Chan C-Y, Tan K-L (2016) Transaction healing: scaling optimistic concurrency control on multicores. In: SIGMOD. ACM, pp 1689–1704Google Scholar
  15. 15.
    Neumann T, Mühlbauer T, Kemper A (2015) Fast serializable multi-version concurrency control for main-memory database systems. In: SIGMOD. ACM, pp 677–689Google Scholar
  16. 16.
    Loesing S, Pilman M, Etter T, Kossmann D (2015) On the design and scalability of distributed shared-data databases. In: SIGMOD. ACM, pp 663–676Google Scholar
  17. 17.
    Jordan J, Banerjee J, Batman R (1981) Precision locks. In: SIGMOD. ACM, pp 143–147Google Scholar
  18. 18.
    Zheng W, Tu S, Kohler E, Liskov B (2014) Fast databases with fast durability and recovery through multicore parallelism. In: OSDI, pp 465–477Google Scholar
  19. 19.
    Eswaran KP, Gray JN, Lorie RA, Traiger IL (1976) The notions of consistency and predicate locks in a database system. Commun ACM 19(11):624–633MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Johnson R, Pandis I, Ailamaki A (2009) Improving OLTP scalability using speculative lock inheritance. Proc VLDB Endow 2(1):479–489CrossRefGoogle Scholar
  21. 21.
    Jung H, Han H, Fekete A, Heiser G, Yeom HY (2014) A scalable lock manager for multicores. TODS 39(4):29MathSciNetCrossRefGoogle Scholar
  22. 22.
    Harizopoulos S, Abadi DJ, Madden S, Stonebraker M (2008) OLTP through the looking glass, and what we found there. In: SIGMOD. ACM, pp 981–992Google Scholar
  23. 23.
    Ren K, Thomson A, Abadi DJ (2012) Lightweight locking for main memory database systems. In: VLDB. vol 6, pp 145–156Google Scholar
  24. 24.
    Pandis I, Johnson R, Hardavellas N, Ailamaki A (2010) Data-oriented transaction execution. Proc VLDB Endow 3(1–2):928–939CrossRefGoogle Scholar
  25. 25.
    Xie C, Su C, Littley C, Alvisi L, Kapritsos M, Wang Y (2015) High-performance acid via modular concurrency control. In: SOSP. ACM, pp 279–294Google Scholar
  26. 26.
    Narula N, Cutler C, Kohler E, Morris R (2014) Phase reconciliation for contended in-memory transactions. In: OSDI, pp 511–524Google Scholar
  27. 27.
    Shasha D, Llirbat F, Simon E, Valduriez P (1995) Transaction chopping: algorithms and performance studies. TODS 20(3):325–363CrossRefGoogle Scholar
  28. 28.
    Yu X, Bezerra G, Pavlo A, Devadas S, Stonebraker M (2014) Staring into the abyss: an evaluation of concurrency control with one thousand cores. Proc VLDB Endow 8(3):209–220CrossRefGoogle Scholar
  29. 29.
    Agrawal R, Carey MJ, Livny M (1987) Concurrency control performance modeling: alternatives and implications. TODS 12(4):609–654CrossRefGoogle Scholar
  30. 30.
    Thomasian A (1993) Two-phase locking performance and its thrashing behavior. TODS 18(4):579–625CrossRefGoogle Scholar
  31. 31.
    Stonebraker M, Madden S, Abadi DJ, Harizopoulos S, Hachem N, Helland P (2007) The end of an architectural era: (it’s time for a complete rewrite). In: VLDB. VLDB Endowment, pp 1150–1160Google Scholar
  32. 32.
    Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EP, Madden S, Stonebraker M, Zhang Y et al (2008) H-store: a high-performance, distributed main memory transaction processing system. VLDB 1(2):1496–1499Google Scholar
  33. 33.
    Faleiro JM, Thomson A, Abadi DJ (2014) Lazy evaluation of transactions in database systems. In: SIGMOD. ACM, pp 15–26Google Scholar
  34. 34.
    Thomson A, Abadi DJ (2010) The case for determinism in database systems. Proc VLDB Endow 3(1–2):70–80CrossRefGoogle Scholar
  35. 35.
    Thomson A, Diamond T, Weng S-C, Ren K, Shao P, Abadi DJ (2012) CalvIn: fast distributed transactions for partitioned database systems. In: SIGMOD, pp 1–12Google Scholar
  36. 36.
    Jones EP, Abadi DJ, Madden S (2010) Low overhead concurrency control for partitioned main memory databases. In: SIGMOD. ACM, pp 603–614Google Scholar
  37. 37.
    Pavlo A, Jones EP, Zdonik S (2011) On predictive modeling for optimizing transaction execution in parallel OLTP systems. Proc VLDB Endow 5(2):85–96CrossRefGoogle Scholar
  38. 38.
    Wu Y, Arulraj J, Lin J, Xian R, Pavlo A (2017) An empirical evaluation of in-memory multi-version concurrency control. Proc VLDB Endow 10(7):781–792CrossRefGoogle Scholar
  39. 39.
    Weikum G, Vossen G (2001) Transactional information systems: theory, algorithms, and the practice of concurrency control and recovery. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Diaconu C, Freedman C, Ismert E, Larson P-Å, Mittal P et al (2013) Hekaton: SQL server’s memory-optimized OLTP engine. In: SIGMOD, pp 1243–1254Google Scholar
  41. 41.
    Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P (1995) A critique of ANSI SQL isolation levels. SIGMOD Rec 24:1–10CrossRefGoogle Scholar
  42. 42.
    Fekete A, Liarokapis D, O’Neil E, O’Neil P, Shasha D (2005) Making snapshot isolation serializable. TODS 30(2):492–528CrossRefGoogle Scholar
  43. 43.
    Jorwekar S, Fekete A, Ramamritham K, Sudarshan S (2007) Automating the detection of snapshot isolation anomalies. In: VLDB, pp 1263–1274Google Scholar
  44. 44.
    Cahill MJ, Röhm U, Fekete AD (2009) Serializable isolation for snapshot databases. DMoNH 34(4):20Google Scholar
  45. 45.
    Revilak S, O’Neil P, O’Neil E (2011) Precisely serializable snapshot isolation (PSSI). In: ICDE. IEEE, pp 482–493Google Scholar
  46. 46.
    Ports DR, Grittner K (2012) Serializable snapshot isolation in PostgreSQL. Proc VLDB Endow 5(12):1850–1861CrossRefGoogle Scholar
  47. 47.
    Wang T, Johnson R, Fekete A, Pandis I (2015) The serial safety net: efficient concurrency control on modern hardware. In: DMoNH. ACM, p 8Google Scholar
  48. 48.
    Adya A, Liskov BH (1999) Weak consistency: a generalized theory and optimistic implementations for distributed transactions. Doctoral dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  49. 49.
    Kim K, Wang T, Johnson R, Pandis I (2016) ERMIA: fast memory-optimized database system for heterogeneous workloads. In: SIGMOD. ACM, pp 1675–1687Google Scholar
  50. 50.
    Jung H, Han H, Fekete A, Röhm U, Yeom HY (2013) Performance of serializable snapshot isolation on multicore servers. In: DASFAA (2), Lecture Notes in Computer Science. Springer, pp 416–430Google Scholar
  51. 51.
    Han H, Park S, Jung H, Fekete A, Rohm U, Yeom HY (2014) Scalable serializable snapshot isolation for multicore systems. In: ICDEGoogle Scholar
  52. 52.
    Malviya N, Weisberg A, Madden S, Stonebraker M (2014) Rethinking main memory OLTP recovery. In: ICDE. IEEE, pp 604–615Google Scholar
  53. 53.
    Yao C, Agrawal D, Chen G, Ooi BC, Wu S (2016) Adaptive logging: optimizing logging and recovery costs in distributed in-memory databases. In: SIGMOD. ACM, pp 1119–1134Google Scholar
  54. 54.
    Johnson R, Pandis I, Stoica R, Athanassoulis M, Ailamaki A (2010) Aether: a scalable approach to logging. Proc VLDB Endow 3(1–2):681–692CrossRefGoogle Scholar
  55. 55.
    Wang T, Johnson R (2014) Scalable logging through emerging non-volatile memory. Proc VLDB Endow 7(10):865–876CrossRefGoogle Scholar
  56. 56.
    Helland P, Sammer H, Lyon J, Carr R, Garrett P, Reuter A (1989) Group commit timers and high volume transaction systems. In: High performance transaction systems. Springer, pp 301–329Google Scholar
  57. 57.
    Jung H, Han H, Kang S (2017) Scalable database logging for multicores. PVLDB 11(2):135–148Google Scholar
  58. 58.
    Fang R, Hsiao H-I, He B, Mohan C, Wang Y (2011) High performance database logging using storage class memory. In: ICDE. IEEE, pp 1221–1231Google Scholar
  59. 59.
    Huang J, Schwan K, Qureshi MK (2014) NVRAM-aware logging in transaction systems. Proc VLDB Endow 8(4):389–400CrossRefGoogle Scholar
  60. 60.
  61. 61.
    Wu Y, Guo W, Chan C, Tan K (2017) Fast failure recovery for main-memory DBMSs on multicores. In: SIGMOD, pp 267–281Google Scholar
  62. 62.
    Arulraj J, Perron M, Pavlo A (2016) Write-behind logging. Proc VLDB Endow 10(4):337–348CrossRefGoogle Scholar
  63. 63.
    Comer D (1979) The ubiquitous b-tree. ACM Comput Surv 11(2):121–137MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Rao J, Ross KA (2000) Making b+-trees cache conscious in main memory. SIGMOD Rec 29:475–486CrossRefGoogle Scholar
  65. 65.
    Rao J, Ross KA (1999) Cache conscious indexing for decision-support in main memory. In: VLDB, pp 78–89Google Scholar
  66. 66.
    Schlegel B, Gemulla R, Lehner W (2009) K-ary search on modern processors. In: Proceedings of the fifth international workshop on data management on new hardware, DaMoN ’09. ACM, New York, pp 52–60Google Scholar
  67. 67.
    Kim C, Chhugani J, Satish N, Sedlar E, Nguyen AD, Kaldewey T, Lee VW, Brandt SA, Dubey P (2010) Fast: fast architecture sensitive tree search on modern CPUs and GPUs. In: SIGMOD, ACM, pp 339–350Google Scholar
  68. 68.
    Mao Y, Kohler E, Morris RT (2012) Cache craftiness for fast multicore key-value storage. In: EuroSys. ACM, pp 183–196Google Scholar
  69. 69.
    Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N (2018) The case for learned index structures. In: SIGMOD, pp 489–504Google Scholar
  70. 70.
    Leis V, Kemper A, Neumann T (2013) The adaptive radix tree: artful indexing for main-memory databases. In: ICDE. IEEE, pp 38–49Google Scholar
  71. 71.
  72. 72.
    Böhm M, Schlegel B, Volk PB, Fischer U, Habich D, Lehner W (2011) Efficient in-memory indexing with generalized prefix trees. In: BTW, Germany, pp 227–246Google Scholar
  73. 73.
    Zhang H, Andersen DG, Pavlo A, Kaminsky M, Ma L, Shen R (2016) Reducing the storage overhead of main-memory OLTP databases with hybrid indexes. In: SIGMOD. ACM, pp 1567–1581Google Scholar
  74. 74.
    Wang Z, Pavlo A, Lim H, Leis V, Zhang H, Kaminsky M, Andersen DG (2018) Building a Bw-tree takes more than just buzz words. In: SIGMOD conference. ACM, pp 473–488Google Scholar
  75. 75.
    Binna R, Zangerle E, Pichl M, Specht G, Leis V (2018) HOT: a height optimized Trie index for main-memory database systems. In: SIGMOD, pp 521–534Google Scholar
  76. 76.
    Zhang H, Lim H, Leis V, Andersen DG, Kaminsky M, Keeton K, Pavlo A (2018) Surf: practical range query filtering with fast succinct tries. In: SIGMOD, pp 323–336Google Scholar
  77. 77.
    Jacobson G (1989) Space-efficient static trees and graphs. In: 30th annual symposium on foundations of computer science, Research Triangle Park, NC, USA, 30 Oct–1 Nov 1989, pp 549–554Google Scholar
  78. 78.
    Stoica R, Ailamaki A (2013) Enabling efficient OS paging for main-memory OLTP databases. In: DaMoN, p 7Google Scholar
  79. 79.
    Funke F, Kemper A, Neumann T (2012) Compacting transactional data in hybrid OLTP&OLAP databases. Proc VLDB Endow 5(11):1424–1435CrossRefGoogle Scholar
  80. 80.
    Eldawy A, Levandoski J, Larson P-Å (2014) Trekking through siberia: managing cold data in a memory-optimized database. Proc VLDB Endow 7(11):931–942CrossRefGoogle Scholar
  81. 81.
    Levandoski JJ, Larson P-Å, Stoica R (2013) Identifying hot and cold data in main-memory databases. In: ICDE. IEEE, pp 26–37Google Scholar
  82. 82.
  83. 83.
    DeBrabant J, Pavlo A, Tu S, Stonebraker M, Zdonik S (2013) Anti-caching: a new approach to database management system architecture. Proc VLDB Endow 6(14):1942–1953CrossRefGoogle Scholar
  84. 84.
    Lang H, Mühlbauer T, Funke F, Boncz PA, Neumann T, Kemper A (2016) Data blocks: hybrid OLTP and OLAP on compressed storage using both vectorization and compilation. In: SIGMOD. ACM, pp 311–326Google Scholar
  85. 85.
    Levandoski JJ, Lomet DB, Sengupta S (2013) The Bw-tree: a b-tree for new hardware platforms. In: ICDE. IEEE, pp 302–313Google Scholar
  86. 86.
    Graefe G (2010) A survey of b-tree locking techniques. TODS 35(3):16CrossRefGoogle Scholar
  87. 87.
    Lehman PL et al (1981) Efficient locking for concurrent operations on b-trees. TODS 6(4):650–670CrossRefzbMATHGoogle Scholar
  88. 88.
    Cha SK, Hwang S, Kim K, Kwon K (2001) Cache-conscious concurrency control of main-memory indexes on shared-memory multiprocessor systems. In: VLDB, vol 1, pp 181–190Google Scholar
  89. 89.
    Sewall J, Chhugani J, Kim C, Satish N, Dubey P (2011) PALM: parallel architecture-friendly latch-free modifications to b+ trees on many-core processors. Proc VLDB Endow 4(11):795–806Google Scholar
  90. 90.
    Neumann T (2011) Efficiently compiling efficient query plans for modern hardware. Proc VLDB Endow 4(9):539–550CrossRefGoogle Scholar
  91. 91.
    Graefe G (1994) Volcano: an extensible and parallel query evaluation system. IEEE Trans Knowl Data Eng 6(1):120–135CrossRefGoogle Scholar
  92. 92.
    Yan C, Cheung A (2016) Leveraging lock contention to improve OLTP application performance. Proc VLDB Endow 9(5):444–455CrossRefGoogle Scholar
  93. 93.
    Wang Z, Mu S, Cui Y, Yi H, Chen H, Li J (2016) Scaling multicore databases via constrained parallel execution. In: SIGMOD. ACM, pp 1643–1658Google Scholar
  94. 94.
    Wang Z, Mu S, Cui Y, Yi H, Chen H, Li J (2016) Scaling multicore databases via constrained parallel execution. In: SIGMOD, ACM. New York, NY, pp 1643–1658Google Scholar
  95. 95.
    Mu S, Cui Y, Zhang Y, Lloyd W, Li J (2014) Extracting more concurrency from distributed transactions. In: OSDI, pp 479–494Google Scholar
  96. 96.
    Curino C, Jones E, Zhang Y, Madden S (2010) Schism: a workload-driven approach to database replication and partitioning. Proc VLDB Endow 3(1–2):48–57CrossRefGoogle Scholar
  97. 97.
    Pavlo A, Curino C, Zdonik S (2012) Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems. In: SIGMOD. ACM, pp 61–72Google Scholar
  98. 98.
    Taft R, Mansour E, Serafini M, Duggan J, Elmore AJ, Aboulnaga A, Pavlo A, Stonebraker M (2014) E-store: fine-grained elastic partitioning for distributed transaction processing systems. Proc VLDB Endow 8(3):245–256CrossRefGoogle Scholar
  99. 99.
    Two-phase commit protocol. Accessed 2018
  100. 100.
    Lin Q, Chang P, Chen G, Ooi BC, Tan K-L, Wang Z (2016) Towards a non-2pc transaction management in distributed database systems. In: SIGMODGoogle Scholar
  101. 101.
    Ren K, Thomson A, Abadi DJ (2014) An evaluation of the advantages and disadvantages of deterministic database systems. Proc VLDB Endow 7(10):821–832CrossRefGoogle Scholar
  102. 102.
    Ailamaki A, DeWitt DJ, Hill MD, Wood DA (1999) DBMSs on a modern processor: where does time go? In: VLDB, pp 266–277Google Scholar
  103. 103.
    Sirin U, Tözün P, Porobic D, Ailamaki A (2016) Micro-architectural analysis of in-memory OLTP. In: SIGMOD, Vol. 215922Google Scholar
  104. 104.
    Tözün P, Gold B, Ailamaki A (2013) OLTP in wonderland: where do cache misses come from in major OLTP components?. In: DaMoN. ACM, p 8Google Scholar
  105. 105.
    Miller JE, Kasture H, Kurian G, Gruenwald C, Beckmann N, Celio C, Eastep J, Agarwal A (2010) Graphite: a distributed parallel simulator for multicores. In: HPCA-16. IEEE, pp 1–12Google Scholar
  106. 106.
    Salomie T-I, Subasu IE, Giceva J, Alonso G (2011) Database engines on multicores, why parallelize when you can distribute? In: EuroSys. ACM, pp 17–30Google Scholar
  107. 107.
    Appuswamy R, Anadiotis A, Porobic D, Iman M, Ailamaki A (2017) Analyzing the impact of system architecture on the scalability of OLTP engines for high-contention workloads. Proc VLDB Endow 11(2):121–134CrossRefGoogle Scholar
  108. 108.
    Mühlbauer T, Rödiger W, Reiser A, Kemper A, Neumann T (2013) ScyPer: elastic OLAP throughput on transactional data. In: DanaC. ACM, pp 11–15Google Scholar
  109. 109.
    Lahiri T, Neimat M-A, Folkman S (2013) Oracle TimesTen: an in-memory database for enterprise applications. IEEE Data Eng Bull 36(2):6–13Google Scholar
  110. 110.
    Lindström J, Raatikka V, Ruuth J, Soini P, Vakkila K (2013) IBM solidDB: in-memory database optimized for extreme speed and availability. IEEE Data Eng Bull 36(2):14–20Google Scholar
  111. 111.
    MemSQL Inc., MemSQL. Accessed 2018
  112. 112.
    Freedman C, Ismert E, Larson P-Å (2014) Compilation in the Microsoft SQL Server Hekaton engine. IEEE Data Eng Bull 37(1):22–30Google Scholar
  113. 113.
    Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis & transformation. In: CGO. IEEE, pp 75–86Google Scholar
  114. 114.
    Fredkin E (1960) Trie memory. CACM 3(9):490–499CrossRefGoogle Scholar
  115. 115.
    Wolski A, Raatikka V (2006) Performance measurement and tuning of hot-standby databases. In: International service availability symposium. Springer, pp 149–161Google Scholar
  116. 116.
    Chan C-Y, Ioannidis YE (1998) Bitmap index design and evaluation. SIGMOD Rec 27:355–366CrossRefGoogle Scholar
  117. 117.
    Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and recovery in database systems. Addison-Wesley, BostonGoogle Scholar
  118. 118.
    Altibase. Altibase administrator’s manual releaseGoogle Scholar
  119. 119.
    Pavlo A, Angulo G, Arulraj J, Lin H, Lin J, Ma L, Menon P, Mowry TC, Perron M, Quah I, Santurkar S, Tomasic A, Toor S, Aken DV, Wang Z, Wu Y, Xian R, Zhang T (2017) Self-driving database management systems. In: CIDR.
  120. 120.
    Peloton. Accessed 2018
  121. 121.
    Sikka V, Färber F, Lehner W, Cha SK, Peh T, Bornhövd C (2012) Efficient transaction processing in SAP HANA database: the end of a column store myth. In: SIGMOD. ACM, pp 731–742Google Scholar
  122. 122.
    Wang T, Kimura H (2016) Mostly-optimistic concurrency control for highly contended dynamic workloads on a thousand cores. Proc VLDB Endw 10(2):49–60CrossRefGoogle Scholar
  123. 123.
    Pavlo A (2017) What are we doing with our lives? Nobody cares about our concurrency control research. In: SIGMOD, p 3Google Scholar
  124. 124.
    Zhu T, Wang D, Hu H, Qian W, Wang X, Zhou A (2018) Interactive transaction processing for in-memory database system. In: DASFAA, part II, pp 228–246Google Scholar
  125. 125.
    Gray J et al (1996) The dangers of replication and a solution. SIGMOD Rec 25(2):173–182CrossRefGoogle Scholar
  126. 126.
    Decandia G et al (2007) Dynamo: Amazon’s highly available key-value store. In: SOSPGoogle Scholar
  127. 127.
    Cassandra website. Accessed 2018
  128. 128.
    Bailis P, Davidson A, Fekete A et al (2013) Highly available transactions: virtues and limitations. Proc VLDB Endow 7(3):181–192CrossRefGoogle Scholar
  129. 129.
    Lamport L (1998) The part-time parliament. TOCS 16(2):133–169CrossRefGoogle Scholar
  130. 130.
    Lamport L (2001) Paxos made simple. ACM SIGACT News 32(4):18–25Google Scholar
  131. 131.
    Baker J, Bond C, Corbett JC et al (2011) Megastore: providing scalable, highly available storage for interactive services. In: CIDR, pp 223–234Google Scholar
  132. 132.
    Corbett JC, Jeffrey D et al (2013) Spanner: Googles globally distributed database. TOCS 31(3):8CrossRefGoogle Scholar
  133. 133.
    Rao J, Shekita EJ, Tata S (2011) Using paxos to build a scalable, consistent, and highly available datastore. In: VLDB, pp 243–254Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Huiqi Hu
    • 1
    Email author
  • Xuan Zhou
    • 1
  • Tao Zhu
    • 1
  • Weining Qian
    • 1
  • Aoying Zhou
    • 1
  1. 1.School of Data Science and EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations