An improved method of locality-sensitive hashing for scalable instance matching
Abstract
In this study, we propose a scalable approach for automatically identifying similar candidate instance pairs in very large datasets. Efficient candidate pair generation is an essential to many computational problems involving calculation of instance similarities. Calculating similarities of instances with a large number of properties and efficiently matching a large number of similar instances in a scalable way are two significant bottlenecks of candidate instance pair generation. In our approach, we utilize locality-sensitive hashing (LSH) technique to greatly improve the scalability of candidate instance pair generation. Based on the candidate similarity threshold, our algorithm automatically discovers the optimum number of hash functions in each band in LSH. Moreover, we evaluated the scalability of our approach and its effectiveness in instance matching task using real-world very large datasets.
Keywords
Scalability Locality-sensitive hashing Instance Matching Instance Similarity Candidate Pairs GenerationNotes
Acknowledgements
We would like to thank the OAEI 2016 campaign Instance Matching Task organizers, particularly Dr. Manel Achichi, Dr. Daniel Faria and Dr. Ernesto Jimnez-Ruiz, for providing run time evaluations. Also, we thank Dr. Daniel Faria for providing AML’s OAEI 2016 version as a stand-alone JAR for testing purposes.
References
- 1.Achichi M, Cheatham M, Dragisic Z, Euzenat J, Faria D, Ferrara A, Flouris G, Fundulaki I, Harrow I, Ivanova V, et al. (2016) Results of the ontology alignment evaluation initiative 2016. In: CEUR workshop proceedings vol 1766. RWTH, pp 73–129Google Scholar
- 2.Aumueller D, Do H-H, Massmann S, Rahm E ( 2005) Schema and ontology matching with coma++. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data. Acm, pp 906–908Google Scholar
- 3.Aydar M, Ayvaz S, Melton AC (2015) Automatic weight generation and class predicate stability in rdf summary graphs. In: Workshop on intelligent exploration of semantic data (IESD2015), co-located with ISWC2015’Google Scholar
- 4.Ayvaz S, Aydar M, Melton A (2015) Building summary graphs of RDF data in semantic web. In: Computer software and applications conference (COMPSAC), 2015 IEEE 39th annual’, vol 2. pp 686–691Google Scholar
- 5.Berlin J, Motro A (2002) Database schema matching using machine learning with feature selection. In: International conference on advanced information systems engineering. Springer, pp 452–466Google Scholar
- 6.Bilenko M, Mooney R, Cohen W, Ravikumar P, Fienberg S (2003) Adaptive name matching in information integration. IEEE Intell Syst 18(5):16–23CrossRefGoogle Scholar
- 7.Bilke A, Naumann F (2005) Schema matching using duplicates. In: Data engineering, 2005. ICDE 2005. Proceedings. 21st international conference on’. IEEE, pp 69–80Google Scholar
- 8.Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so far. Int J Semant Web Inf Syst 5(3):1–22CrossRefGoogle Scholar
- 9.Broder AZ (1997) On the resemblance and containment of documents. In: Compression and complexity of sequences 1997. Proceedings. IEEE, pp 21–29Google Scholar
- 10.Castano S, Ferrara A, Montanelli S, Lorusso D (2008) Instance matching for ontology population. In: SEBD. pp 121–132Google Scholar
- 11.Charikar MS (2002) Similarity estimation techniques from rounding algorithms. In: Proceedings of the thirty-fourth annual ACM symposium on theory of computing. ACM, pp 380–388Google Scholar
- 12.Chierichetti F, Kumar R (2015) Lsh-preserving functions and their applications. J ACM (JACM) 62(5):33MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Chierichetti F, Kumar R, Mahdian M (2014) The complexity of lsh feasibility. Theor Comput Sci 530:89–101MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Chum O, Philbin J, Zisserman A et al (2008) Near duplicate image detection: min-hash and tf-idf weighting. In: BMVC, vol 810. pp 812–815Google Scholar
- 15.Cochinwala M, Kurien V, Lalk G, Shasha D (2001) Efficient data reconciliation. Inf Sci 137(1):1–15CrossRefzbMATHGoogle Scholar
- 16.Cohen E, Datar M, Fujiwara S, Gionis A, Indyk P, Motwani R, Ullman JD, Yang C (2001) Finding interesting associations without support pruning. IEEE Trans Knowl Data Eng 13(1):64–78CrossRefGoogle Scholar
- 17.Das AS, Datar M, Garg A, Rajaram S (2007) Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th international conference on World Wide Web. ACM, pp 271–280Google Scholar
- 18.Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113CrossRefGoogle Scholar
- 19.Doan A, Madhavan J, Domingos P, Halevy A (2004) Ontology matching: a machine learning approach. In: Handbook on ontologies. Springer, pp 385–403Google Scholar
- 20.Duan S, Fokoue A, Hassanzadeh O, Kementsietsidis A, Srinivas K, Ward MJ (2012) Instance-based matching of large ontologies using locality-sensitive hashing. In: International semantic web conference. Springer, pp 49–64Google Scholar
- 21.Engmann D, Massmann S (2007) Instance matching with coma++. In: BTW workshops, vol 7. pp 28–37Google Scholar
- 22.Faria D, Pesquita C, Balasubramani BS, Martins C, Cardoso J, Curado H, Couto FM, Cruz IF, (2016) OAEI 2016 results of AML. In: Ontology matching, p 138Google Scholar
- 23.Fernandes K, Vinagre P, Cortez P (2015) A proactive intelligent decision support system for predicting the popularity of online news. In: Portuguese conference on artificial intelligence. Springer, pp 535–546Google Scholar
- 24.Gasparetti F (2017) Modeling user interests from web browsing activities. Data Min Knowl Discov 31(2):502–547MathSciNetCrossRefGoogle Scholar
- 25.Gionis A, Indyk P, Motwani R et al (1999) Similarity search in high dimensions via hashing. In: VLDB, vol 99. pp 518–529Google Scholar
- 26.Grauman K, Darrell T (2007) Pyramid match hashing: sub-linear time indexing over partial correspondences. In: Computer vision and pattern recognition, 2007. CVPR’07. IEEE conference on’. IEEE, pp 1–8Google Scholar
- 27.Haveliwala T, Gionis A, Indyk P (2000) Scalable techniques for clustering the web (extended abstract). In: Third international workshop on the web and databases (WebDB 2000). http://ilpubs.stanford.edu:8090/445/. Accessed 19 Oct 2017
- 28.He K, Wen F, Sun J (2013) \(K\)-means hashing: an affinity-preserving quantization method for learning binary compact codes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2938–2945Google Scholar
- 29.Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing. ACM, pp 604–613Google Scholar
- 30.Isaac A, Van Der Meij L, Schlobach S, Wang S (2007) An empirical study of instance-based ontology matching. In: The semantic web. Springer, pp 253–266Google Scholar
- 31.Jaccard P (1901) Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull Soc Vaudoise Sci Nat 37:547–579Google Scholar
- 32.Jain P, Hitzler P, Sheth AP, Verma K, Yeh PZ (2010) Ontology alignment for linked open data. In: International semantic web conference. Springer, pp 402–417Google Scholar
- 33.Jain P, Kulis B, Grauman K (2008) Fast image search for learned metrics. In: Computer vision and pattern recognition, 2008. CVPR 2008. IEEE conference on. IEEE, pp 1–8Google Scholar
- 34.Jain P, Yeh PZ, Verma K, Vasquez RG, Damova M, Hitzler P, Sheth AP (2011) Contextual ontology alignment of lod with an upper ontology: a case study with proton. In: Extended semantic web conference. Springer, pp 80–92Google Scholar
- 35.Jiménez-Ruiz E, Grau BC, Cross V (2016) Logmap family participation in the OAEI 2016. In: Ontology matching, p 185Google Scholar
- 36.Kulis B, Grauman K (2012) Kernelized locality-sensitive hashing. IEEE Trans Pattern Anal Mach Intell 34(6):1092–1104CrossRefGoogle Scholar
- 37.Leskovec J, Rajaraman A, Ullman JD (2014) Mining of massive datasets. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- 38.Li J, Tang J, Li Y, Luo Q (2009) Rimom: a dynamic multistrategy ontology alignment framework. IEEE Trans Knowl Data Eng 21(8):1218–1232CrossRefGoogle Scholar
- 39.Li W-S, Clifton C (2000) Semint: a tool for identifying attribute correspondences in heterogeneous databases using neural networks. Data Knowl Eng 33(1):49–84CrossRefzbMATHGoogle Scholar
- 40.Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 15 Feb 2017
- 41.Lin J (2009) Brute force and indexed approaches to pairwise document similarity comparisons with MapReduce. In: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval. ACM, pp 155–162Google Scholar
- 42.Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with cupid. In: vldb vol 1. pp 49–58Google Scholar
- 43.Manber U et al (1994) Finding similar files in a large file system. In: Usenix winter, vol 94. pp 1–10Google Scholar
- 44.McAuley J, Pandey R, Leskovec J (2015) , Inferring networks of substitutable and complementary products. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 785–794Google Scholar
- 45.McAuley J, Targett C, Shi Q, van den Hengel A (2015) Image-based recommendations on styles and substitutes. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 43–52Google Scholar
- 46.Melnik S, Garcia-Molina H, Rahm E (2002) , Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Data engineering 2002. Proceedings. 18th international conference on. IEEE, pp 117–128Google Scholar
- 47.Rajaraman A, Ullman JD (2011) Mining of massive datasets. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- 48.Ravichandran D, Pantel P, Hovy E (2005) Randomized algorithms and nlp: using locality sensitive hash function for high speed noun clustering. In: Proceedings of the 43rd annual meeting on association for computational linguistics, Association for Computational Linguistics, pp 622–629Google Scholar
- 49.Rong S, Niu X, Xiang EW, Wang H, Yang Q, Yu Y (2012) A machine learning approach for instance matching based on similarity metrics. In: International semantic web conference. Springer, pp 460–475Google Scholar
- 50.Seddiqui M, Nath R, PD, Aono M et al (2015) An efficient metric of automatic weight generation for properties in instance matching technique. ArXiv preprint arXiv:1502.03556
- 51.Spohr D, Hollink L, Cimiano P (2011) A machine learning approach to multilingual and cross-lingual ontology matching. In: International semantic web conference. Springer, pp 665–680Google Scholar
- 52.Stoilos G, Stamou G, Kollias S (2005) A string metric for ontology alignment. In: International semantic web conference. Springer, pp 624–637Google Scholar
- 53.Wang C, Lu J, Zhang G (2006) Integration of ontology data through learning instance matching. In: Web intelligence, 2006. WI 2006. IEEE/WIC/ACM international conference on. IEEE, pp 536–539Google Scholar
- 54.Wang S, Englebienne G, Schlobach S (2008) Learning concept mappings from instance similarity. In: The semantic web-ISWC 2008. pp 339–355Google Scholar
- 55.Wrigley SN, García-Castro R, Nixon L (2012) Semantic evaluation at large scale (seals). In: Proceedings of the 21st international conference on world wide web. ACM, pp 299–302Google Scholar
- 56.Xu D, Wu J, Li D, Tian Y, Zhu X, Wu X (2017) SALE: Self-adaptive LSH encoding for multi-instance learning. Pattern Recognit 71:460–482CrossRefGoogle Scholar
- 57.Zhang W, Ji J, Zhu J, Xu H, Zhang B (2015) Large scale sentiment analysis with locality sensitive BitHash. In: Asia information retrieval symposium. Springer, pp 29–40Google Scholar
- 58.Zhu E, Nargesian F, Pu KQ, Miller RJ (2016) LSH ensemble: internet-scale domain search. Proc VLDB Endow 9(12):1185–1196CrossRefGoogle Scholar