Knowledge and Information Systems

, Volume 37, Issue 3, pp 693–729 | Cite as

Exchanging Data amongst Linked Data applications

  • Carlos R. RiveroEmail author
  • Inma Hernández
  • David Ruiz
  • Rafael Corchuelo
Regular Paper


The goal of data exchange is to populate the data model of a target application using data that come from one or more source applications. It is common to address data exchange building on correspondences that are transformed into executable mappings. The problem that we address in this article is how to generate executable mappings in the context of Linked Data applications, that is, applications whose data models are semantic-web ontologies. In the literature, there are many proposals to generate executable mappings. Most of them focus on relational or nested-relational data models, which cannot be applied to our context; unfortunately, the few proposals that focus on ontologies have important drawbacks, namely: they solely work on a subset of taxonomies, they require the target data model to be pre-populated or they interpret correspondences in isolation, not to mention the proposals that actually require the user to handcraft the executable mappings. In this article, we present MostoDE, a new automated proposal to generate SPARQL executable mappings in the context of Linked Data applications. Its salient features are that it does not have any of the previous drawbacks, it is computationally tractable and it has been validated using a series of experiments that prove that it is very efficient and effective in practice.


Knowledge and data engineering Data exchange Linked Data Executable mappings SPARQL 



We would like to thank Dr. Alberto Pan, Dr. Paolo Papotti and Dr. Carlos Pedrinaci for their helpful suggestions on an earlier draft of this article. We also thank our reviewers for their insightful and valuable comments, which helped us improve the paper significantly. The work on which we report was supported by the European Commission (FEDER), the Spanish and the Andalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E, TIN2010-09988-E, and TIN2011-15497-E).


  1. 1.
    Alexe B, Chiticariu L, Miller RJ, Pepper D, Tan WC (2008a) Muse: A system for understanding and designing mappings. In: SIGMOD, pp 1281–1284Google Scholar
  2. 2.
    Alexe B, Tan WC, Velegrakis Y (2008b) STBenchmark: towards a benchmark for mapping systems. PVLDB 1(1):230–244Google Scholar
  3. 3.
    Antoniou G, van Harmelen F (2008) A semantic web primer, 2nd edn. The MIT Press, CambridgeGoogle Scholar
  4. 4.
    Arenas M, Libkin L (2008) XML data exchange: consistency and query answering. J ACM 55(2):1–72MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arjona JL, Corchuelo R, Ruiz D, Toro M (2007) From wrapping to knowledge. IEEE Trans Knowl Data Eng 19(2):310–323CrossRefGoogle Scholar
  6. 6.
    Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF, Stein LA (2004) OWL web ontology language reference. Technical report, W3C.
  7. 7.
    Bernstein PA, Haas LM (2008) Information integration in the enterprise. Commun ACM 51(9):72–79CrossRefGoogle Scholar
  8. 8.
    Bernstein PA, Melnik S (2007) Model management 2.0: manipulating richer mappings. In: SIGMOD, pp 1–12Google Scholar
  9. 9.
    Bizer C (2009) The emerging Web of Linked Data. IEEE intelligent systems 5(3):87–92CrossRefGoogle Scholar
  10. 10.
    Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S (2009) DBpedia: a crystallization point for the Web of Data. J Web Semant 7(3):154–165CrossRefGoogle Scholar
  11. 11.
    Bouquet P, Giunchiglia F, van Harmelen F, Serafini L, Stuckenschmidt H (2004) Contextualizing ontologies. J Web Semant 1(4):325–343CrossRefGoogle Scholar
  12. 12.
    Candan KS, Kim JW, Liu H, Suvarna R (2006) Discovering mappings in hierarchical data from multiple sources using the inherent structure. Knowl Inf Syst 10(2):185–210CrossRefGoogle Scholar
  13. 13.
    Choi N, Song I-Y, Han H (2006) A survey on ontology mapping. SIGMOD Rec 35(3):34–41CrossRefGoogle Scholar
  14. 14.
    Deutsch A, Nash A, Remmel JB (2008) The chase revisited. In: PODS, pp 149–158Google Scholar
  15. 15.
    Dorneles CF, Gonçalves R (2011) Approximate data instance matching: a survey. Knowl Inf Syst 27(1): 1–21Google Scholar
  16. 16.
    Dou D, McDermott DV, Qi P (2005) Ontology translation on the semantic web. J Data Semant 2:35–57Google Scholar
  17. 17.
    Euzenat J, Shvaiko P (2007) Ontology matching. Springer, BerlinzbMATHGoogle Scholar
  18. 18.
    Fagin R, Kolaitis PG, Miller RJ, Popa L (2005) Data exchange: semantics and query answering. Theor Comput Sci 336(1):89–124MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Flouris G, Konstantinidis G, Antoniou G, Christophides V (2012) Formal foundations for RDF/S KB evolution. Knowl Inf Syst 1–39. doi: 10.1007/s10115-012-0500-2
  20. 20.
    Flouris G, Manakanatas D, Kondylakis H, Plexousakis D, Antoniou G (2008) Ontology change: classification and survey. Knowl Eng Rev 23(2):117–152CrossRefGoogle Scholar
  21. 21.
    Glimm B, Hogan A, Krötzsch M, Polleres A (2012) OWL: yet to arrive on the web of data? In: LDOWGoogle Scholar
  22. 22.
    Groza T, Grimnes G, Handschuh S, Decker S (2011) From raw publications to Linked Data. Knowl Inf Syst 1–21. doi: 10.1007/s10115-011-0473-6
  23. 23.
    Haas LM, Hernández MA, Ho H, Popa L, Roth M (2005) Clio grows up: From research prototype to industrial tool. In: SIGMOD, pp 805–810Google Scholar
  24. 24.
    Halevy AY (2001) Answering queries using views: a survey. VLDB J 10(4):270–294CrossRefzbMATHGoogle Scholar
  25. 25.
    Hopcroft JE, Tarjan RE (1973) Efficient algorithms for graph manipulation [H] (Algorithm 447). Commun ACM 16(6):372–378CrossRefGoogle Scholar
  26. 26.
    Jing Y, Jeong D, Baik D-K (2009) SPARQL graph pattern rewriting for OWL-DL inference queries. Knowl Inf Syst 20(2):243–262CrossRefGoogle Scholar
  27. 27.
    Klusch M, Fries B, Sycara KP (2009) OWLS-MX: a hybrid semantic web service matchmaker for OWL-S services. J Web Semant 7(2):121–133CrossRefGoogle Scholar
  28. 28.
    Klyne G, Carroll JJ (2004) Resource description framework (RDF): concepts and abstract syntax. Technical report, W3C.
  29. 29.
    Kobilarov G, Scott T, Raimond Y, Oliver S, Sizemore C, Smethurst M, Bizer C, Lee R (2009) Media meets semantic web: how the BBC uses DBpedia and Linked Data to make connections. In: ESWC, pp 723–737Google Scholar
  30. 30.
    Leite M, Ricarte I (2012) Relating ontologies with a fuzzy information model. Knowl Inf Syst 1–33. doi: 10.1007/s10115-012-0482-0
  31. 31.
    Lenzerini M (2002) Data integration: A theoretical perspective. In: PODS, pp 233–246Google Scholar
  32. 32.
    Maedche A, Motik B, Silva N, Volz R (2002) MAFRA: A MApping FRAmework for distributed ontologies. In: EKAW, pp 235–250Google Scholar
  33. 33.
    Mergen SLS, Heuser CA (2006) Data translation between taxonomies. In: CAiSE, pp 111–124Google Scholar
  34. 34.
    Mocan A, Cimpian E (2007) An ontology-based data mediation framework for semantic environments. Int. J Semant Web Inf Syst 3(2):69–98CrossRefGoogle Scholar
  35. 35.
    Motik B, Horrocks I, Sattler U (2009) Bridging the gap between OWL and relational databases. J Web Semant 7(2):74–89CrossRefGoogle Scholar
  36. 36.
    Mrissa M, Ghedira C, Benslimane D, Maamar Z, Rosenberg F, Dustdar S (2007) A context-based mediation approach to compose semantic web services. ACM Trans Internet Tech 8(1):4CrossRefGoogle Scholar
  37. 37.
    Noy NF (2004) Semantic integration: a survey of ontology-based approaches. SIGMOD Rec 33(4):65–70CrossRefGoogle Scholar
  38. 38.
    Noy NF, Klein MCA (2004) Ontology evolution: not the same as schema evolution. Knowl Inf Syst 6(4):428–440CrossRefGoogle Scholar
  39. 39.
    Omelayenko B (2002) Integrating vocabularies: discovering and representing vocabulary maps. In: ISWC, pp 206–220Google Scholar
  40. 40.
    Palopoli L, Rosaci D, Terracina G, Ursino D (2005) A graph-based approach for extracting terminological properties from information sources with heterogeneous formats. Knowl Inf Syst 8(4):462–497CrossRefGoogle Scholar
  41. 41.
    Parreiras FS, Staab S, Schenk S, Winter A (2008) Model driven specification of ontology translations. In: ER, pp 484–497Google Scholar
  42. 42.
    Pedrinaci C, Domingue J (2010) Toward the next wave of services: linked services for the web of data. J UCS 16(13):1694–1719Google Scholar
  43. 43.
    Petropoulos M, Deutsch A, Papakonstantinou Y, Katsis Y (2007) Exporting and interactively querying web service-accessed sources: the CLIDE system. ACM Trans Database Syst 32(4):22CrossRefGoogle Scholar
  44. 44.
    Polleres A, Scharffe F, Schindlauer R (2007) SPARQL++ for mapping between RDF vocabularies. In: OTM, pp 878–896Google Scholar
  45. 45.
    Popa L, Velegrakis Y, Miller RJ, Hernández MA, Fagin R (2002) Translating web data. In: VLDB, pp 598–609Google Scholar
  46. 46.
    Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. Technical report, W3C.
  47. 47.
    Qin H, Dou D, LePendu P (2007) Discovering executable semantic mappings between ontologies. In: ODBASE, pp 832–849Google Scholar
  48. 48.
    Raffio A, Braga D, Ceri S, Papotti P, Hernández MA (2008) Clip: A visual language for explicit schema mappings. In: ICDE, pp 30–39Google Scholar
  49. 49.
    Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10(4): 334–350Google Scholar
  50. 50.
    Ressler J, Dean M, Benson E, Dorner E, Morris C (2007) Application of ontology translation. In: ISWC, pp 830–842Google Scholar
  51. 51.
    Rivero CR, Hernández I, Ruiz D, Corchuelo R (2011a) Generating SPARQL executable mappings to integrate ontologies. In: ER, pp 118–131Google Scholar
  52. 52.
    Rivero CR, Hernández I, Ruiz D, Corchuelo R (2011b) Mosto: Generating SPARQL executable mappings between ontologies. In: ER, pp 345–348Google Scholar
  53. 53.
    Rivero CR, Hernández I, Ruiz D, Corchuelo R (2011c) On benchmarking data translation systems for semantic-web ontologies. In: CIKM, pp 1613–1618Google Scholar
  54. 54.
    Rivero CR, Hernández I, Ruiz D, Corchuelo R (2012) Benchmarking data exchange amongst semantic-web ontologies. IEEE Trans Knowl Data Eng PP(99). doi: 10.1109/TKDE.2012.175
  55. 55.
    Rivero CR, Ruiz D, Corchuelo R (2011d) Automatic generation of executable mappings: a semantic-web technologies approach. Technical report TDG-247, University of Sevilla.
  56. 56.
    Serafini L, Tamilin A (2007) Instance migration in heterogeneous ontology environments. In: ISWC, pp 452–465Google Scholar
  57. 57.
    Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intell Syst 21(3):96–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Carlos R. Rivero
    • 1
    Email author
  • Inma Hernández
    • 1
  • David Ruiz
    • 1
  • Rafael Corchuelo
    • 1
  1. 1.University of Sevilla, ETSI InformáticaSevilleSpain

Personalised recommendations