Acta Mathematica Sinica, English Series

, Volume 35, Issue 11, pp 1854–1860 | Cite as

Gelfand-Kirillov Dimension and Reducibility of Scalar Generalized Verma Modules

  • Zhan Qiang Bai
  • Wei XiaoEmail author


The Gelfand-Kirillov dimension is an invariant which can measure the size of infinite-dimensional algebraic structures. In this article, we show that it can also measure the reducibility of scalar generalized Verma modules. In particular, we use it to determine the reducibility of scalar generalized Verma modules associated with maximal parabolic subalgebras in the Hermitian symmetric case.


Gelfand-Kirillov dimension generalized Verma module reducibility 

MR(2010) Subject Classification

22E47 17B10 17B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank the anonymous referees for valuable comments and suggestions.


  1. [1]
    Bai, Z. Q., Hunziker, M.: The Gelfand-Kirillov dimension of a unitary highest weight module. Sci. China Math., 58(12), 2489–2498 (2015)MathSciNetCrossRefGoogle Scholar
  2. [2]
    Bai, Z. Q., Xiao, W.: Irreducibility of generalized Verma modules for hermitian symmetric pairs, submittedGoogle Scholar
  3. [3]
    Bai, Z. Q., Xie, X.: Gelfand-Kirillov dimensions of highest weight Harish-Chandra modules for SU(p, q). Int. Math. Res. Not., doi: MathSciNetCrossRefGoogle Scholar
  4. [4]
    Boe, B.: Homomorphisms between generalized Verma modules. Trans. Amer. Math. Soc., 288, 791–799 (1985)MathSciNetCrossRefGoogle Scholar
  5. [5]
    Enright, T. J., Howe, R., Wallach, N.: A classification of unitary highest weight modules, in: “Representation Theory of Reductive Groups,” Progress in Math. 40, Birkhäuser Boston Inc., 97–143 (1983)Google Scholar
  6. [6]
    Enright, T. J., Hunziker, M.: Resolutions and Hilbert series of determinantal varieties and unitary highest weight modules. J. Algebra, 273, 608–639 (2004)MathSciNetCrossRefGoogle Scholar
  7. [7]
    He, H.: On the reducibility of scalar generalized Verma modules of abelian type. Algebr. Represent. Theory, 19(1), 147–170 (2016)MathSciNetCrossRefGoogle Scholar
  8. [8]
    He, H., Kubo, T., Zierau, R.: On the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras, to appear in Kyoto. J. Math.Google Scholar
  9. [9]
    Humphreys, J.: Representations of Semisimple Lie Algebras in the BGG Category \({\cal O}\), GSM. 94, Amer. Math. Soc., Providence, 2008zbMATHGoogle Scholar
  10. [10]
    Irving, R. S.: Projective modules in the category \({{\cal O}_S}\): self-duality. Trans. Amer. Math. Soc., 291(2), 701–732 (1985)MathSciNetzbMATHGoogle Scholar
  11. [11]
    Jantzen, J. C.: Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren. Math. Ann., 226, 53–65 (1977)MathSciNetCrossRefGoogle Scholar
  12. [12]
    Kubo, T.: On reducibility criterions for scalar generalized Verma modules associated to maximal parabolic subalgebras, Lie Theory and Its Applications in Physics (V. Dobrev (ed.), Springer Proc. Math. & Stat. vol. 191, Springer, Tokyo, 465–473 (2016)Google Scholar
  13. [13]
    Vogan, D. A.: Gelfand-Kirillov dimension for Harish-Chandra modules. Invent. Math., 48, 75–98 (1978)MathSciNetCrossRefGoogle Scholar
  14. [14]
    Xiao, W.: Leading weight vectors and homomorphisms between generalized Verma modules. J. Algebra, 430, 62–93 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesSoochow UniversitySuzhouP. R. China
  2. 2.College of Mathematics and statistics, Shenzhen Key Laboratory of Advanced Machine Learning and ApplicationsShenzhen UniversityShenzhenP. R. China

Personalised recommendations