Non-Gaussian Random Bi-matrix Models for Bi-free Central Limit Distributions with Positive Definite Covariance Matrices
Article
First Online:
- 8 Downloads
Abstract
In this paper, we construct random two-faced families of matrices with non-Gaussian entries to approximate a bi-free central limit distribution with a positive definite covariance matrix. We prove that, under modest conditions weaker than independence, a family of random two-faced families of matrices with non-Gaussian entries is asymptotically bi-free from a two-faced family of constant diagonal matrices.
Keywords
Bi-free central limit distributions non-Gaussian random matrices asymptotic bi-freenessMR(2010) Subject Classification
46L54Preview
Unable to display preview. Download preview PDF.
References
- [1]Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Ramdom Matrices, Cambridge Stud. Adv. Math., 118, Cambridge Univ. Press, New York, 2009Google Scholar
- [2]Charlesworth, I., Nelson, B., Skoufranis, P.: Combinatorics of Bi-free Probaility with Amalgamation. Comm. Math. Phys., 338(2), 801–847 (2015)MathSciNetCrossRefGoogle Scholar
- [3]Charlesworth, I., Nelson, B., Skoufranis, P.: On two-faced families of non-commutative random variables. Canad. J. Math., 26(6), 1290–1325 (2015)MathSciNetCrossRefGoogle Scholar
- [4]Dykema, K.: On certain free product factors via an extended matrix model. J. Funct. Anal., 112, 31–60 (1993)MathSciNetCrossRefGoogle Scholar
- [5]Gao, M.: Two-faced families of non-commutative random variables having bi-free infinitely divisible distributions. Internat. J. Math., 27(4), 1650037, 20 pp. (2016)MathSciNetCrossRefGoogle Scholar
- [6]Gu, Y., Huang, H., Mingo, J.: An analogue of the Levy-Hincin formula for bi-free infintely divisible distributions. Indiana Univ. Math. J., 65(5), 1795–1831 (2016)MathSciNetCrossRefGoogle Scholar
- [7]Hiai, F., Pets, D.: The Semicircle Law, Free Random Variables, and Entropy, Math. Surveys Monogr, Vol. 77, AMS, 2000Google Scholar
- [8]Nica, A., Speicher, R.: Lectures on Combinatorics for Free Probability. London Math. Soc. Lecture Note Ser., Vol. 335, Cambridge Univ. Press (2006)Google Scholar
- [9]Skoufranis, P.: Some bi-matrix models for bi-free limit distributions. Indiana Univ. Math. J., 66(5), 1755–1795 (2017)MathSciNetCrossRefGoogle Scholar
- [10]Skoufranis, P.: Independence and partial R-transforms in bi-free probability. Ann. Inst. H. Poincaré Probab. Statist., 52(3), 1437–1473 (2016)MathSciNetCrossRefGoogle Scholar
- [11]Voiculescu, D.: Free probability of pairs of two faces I. Comm. Math. Phys., 332, 955–980 (2014)MathSciNetCrossRefGoogle Scholar
- [12]Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math., 104, 201–220 (1991)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019