Weak Solutions to the Cahn—Hilliard Equation with Degenerate Diffusion Mobility in ℝN

  • Ji Hui WuEmail author
  • Lei LuEmail author


This paper is concerned with a popular form of Cahn—Hilliard equation which plays an important role in understanding the evolution of phase separation. We get the existence and regularity of a weak solution to nonlinear parabolic, fourth order Cahn—Hilliard equation with degenerate mobility M(u) = um (1 − u)m which is allowed to vanish at 0 and 1. The existence and regularity of weak solutions to the degenerate Cahn—Hilliard equation are obtained by getting the limits of Cahn—Hilliard equation with non-degenerate mobility. We explore the initial value problem with compact support and obtain the local non-negative result. Further, the above derivation process is also suitable for the viscous Cahn—Hilliard equation with degenerate mobility.


Degenerate non-degenerate viscous convergence 

MR(2010) Subject Classification

35K55 35B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to reviewers and for their time and comments.


  1. [1]
    Bensoussan, A., Lions, J. L., Papanicolau, G.: Asymptotic Analysis for Periodic Structures, North Holland, 1978Google Scholar
  2. [2]
    Blowey, J. F., Elliott, C. M.: The Cahn—Hilliard gradient theory for phase separation with non-smooth free energy Part I: Mathematical analysis. Euro. Appl. Math., 2, 233–279 (1991)CrossRefzbMATHGoogle Scholar
  3. [3]
    Bai, F., Elliott, C., Gardiner, M. A., et al.: The viscous Cahn—Hilliard equation, I: Computations. Nonlinearity, 8(2), 131–160 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Cahn, J. W., Hilliard, J.: Free energy of a nonuniform system I, Interfacial free energy. J. Chem. Phys., 28, 258–267 (1958)CrossRefGoogle Scholar
  5. [5]
    Cahn, J. W.: On spinodal decomposition. Acta Metall., 9, 795–801 (1961)CrossRefGoogle Scholar
  6. [6]
    Cahn, J. W., Elliott, C. M., Novick-Cohen, A.: The Cahn—Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Euro. Appl. Math., 7, 287–301 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Charles, M. E., Zheng, S. M.: On the Cahn—Hilliard equation. Arch. Rational Mech. Anal., 96, 339–357 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Cohen, D., Murray, J. M.: A generalized diffusion model for growth and dispersion in a population. J. Math. Biol., 12, 237–248 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, New York, 1999zbMATHGoogle Scholar
  10. [10]
    Dai, S. B., Du, Q.: Weak solutions for the Cahn—Hilliard equation with degenerate mobility. Arch. Rational Mech. Anal., 219, 1161–1184 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Dai, S. B., Du, Q.: Coarsening mechanism for systems governed by the Cahn—Hilliard equation with degenerate diffusion mobility. Multiscale Model. Simul., 12, 1870–1889 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Dlotko, T., Kania, M. B., Sun, C. Y.: Analysis of viscous Cahn—Hilliard equation in R N. J. Differential Equations, 252, 2771–2791 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Eden, A., Kalantarov, V. K., Zelik, S. V.: Infinite energy soltutions for the Cahn—Hilliard equation in cylindrical domains. Meth. Appl. Sci., 37, 1884–1968 (2014)CrossRefzbMATHGoogle Scholar
  14. [14]
    Elliott, C. M., Garcke, H.: On the Cahn—Hilliard equation with degernerate mobility. SIAM J. Math. Anal. Vol., 27, 404–423 (1996)CrossRefzbMATHGoogle Scholar
  15. [15]
    Elliott, C. M.: Viscous Cahn—Hilliard equation II. Analysis. J. Differential Equations, 128, 387–414 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Fakih, H.: Asymptotic behavior of a generalized Cahn—Hilliard equation with a mass source. Applicable Analysis, 96(2), 324–348 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Grün, G.: Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening, Zeitschrift für analysis ihre anwendungen. J. Anal. Appl., 14, 541–574 (1995)MathSciNetzbMATHGoogle Scholar
  18. [18]
    Klapper, I., Dockery, J.: Role of cohesion in the material description of biofilms. Phys. Rev. E., 74, 021–028 (2006)MathSciNetCrossRefGoogle Scholar
  19. [19]
    Novick-Cohen, A.: On the viscous Cahn—Hilliard equation. Material Instabilities in Continuum Mechanics, 329–342 (1985)Google Scholar
  20. [20]
    Novick-Cohen, A.: On Cahn—Hilliard type equations. Nonlinear Anal TMA, 15, 797–814 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Novick-Cohen, A., Peletier, L. A.: The steady states of the one-demensional Cahn—Hilliard equation. Appl. Math. Lett., 3, 45–46 (1992)CrossRefzbMATHGoogle Scholar
  22. [22]
    Novick-Cohen, A.: The Cahn—Hilliard equation. Handbook of Differential Equations—Evolutionary Equation, Volume 4, North-Holland-Elsevier, UK, 2008Google Scholar
  23. [23]
    Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems I. Modeling. Phys. Rev. A., 38(1), 434–453 (1988)CrossRefGoogle Scholar
  24. [24]
    Simon, J.: Compact sets in the space L p(0, T; B). Ann. Mat. Pura. Appl., 146(1), 65–96 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019

Authors and Affiliations

  1. 1.College of Mathematics, Physics and StatisticsShanghai University of Engineering ScienceShanghaiP. R. China
  2. 2.College of SciencesShanghai UniversityShanghaiP. R. China
  3. 3.College of Mechanical EngineeringBeijing University of TechnologyBeijingP. R. China

Personalised recommendations