Advertisement

Derivatives of Frobenius and Derivatives of Hodge—Tate Weights

  • Bing Yong XieEmail author
Article

Abstract

In this paper we study the derivatives of Frobenius and the derivatives of Hodge—Tate weights for families of Galois representations with triangulations. We generalize the Fontaine—Mazur \(\mathcal{L}\)-invariant and use it to build a formula which is a generalization of the Colmez—Greenberg—Stevens formula. For the purpose of proving this formula we show two auxiliary results called projection vanishing property and “projection vanishing implying \(\mathcal{L}\)-invariants” property.

Keywords

Fontaine-Mazur \(\mathcal{L}\)-invariant Galois representation 

MR(2010) Subject Classification

11S25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Part of this work was done while the author was a visitor at Shanghai Center for Mathematical Sciences. The author is grateful to this institution for its hospitality. The author thanks Liang Xiao for his helpful discussion.

References

  1. [1]
    Bellaïche, J., Chenevier, G.: Families of Galois representations and Selmer groups. Astérisque, 324, 314 page (2009)Google Scholar
  2. [2]
    Benois, D.: Infinitesimal deformations and the -invariant. Documenta Math., Extra Volume: Andrei A. Suslin’s Sixtieth Birthday 5–31 (2010)Google Scholar
  3. [3]
    Benois, D.: A generalization of Greenberg’s -invariant. Amer.J.Math., 133, 1573–1632 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Berger, L.: Représentations p-adiques et équations différentielles. Invent. Math., 148, 219–284 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Berger, L.: Trianguline representations. Bull. Lond. Math. Soc., 43, 619–635 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Berger, L.: Équations différentielles p-adiques et (φ, N)-modules filtrés. Astérisque, 319, 13–38 (2008)zbMATHGoogle Scholar
  7. [7]
    Berger, L., Colmez, P.: Familles des repréntationsdedeRhametmonodromie p-adique. Astérisque, 319, 303–337 (2008)zbMATHGoogle Scholar
  8. [8]
    Bernstein, I. N., Zelevinski, A. V.: Induced representations of reductive p-adic groups. I. Ann. Sci. École Norm. Sup. (4), 10, 441–472 (1977)MathSciNetCrossRefGoogle Scholar
  9. [9]
    Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups, Ann. of Math. Studies, 94, Princeton University Press, Princeton NJ, 1980zbMATHGoogle Scholar
  10. [10]
    Breuil, C.: Ext1 localement analytique et compatibilite local-global. Prepublication, 2016Google Scholar
  11. [11]
    Breuil, C., Mézard, A.: Multiplicités modulaires et représentations de GL2(Z p) et de \({\rm{Gal}}(\overline {{{\rm{Q}}_p}} /{{\rm{Q}}_p})\) en l = p. Duke Math. J., 115, 205–310 (2002)MathSciNetCrossRefGoogle Scholar
  12. [12]
    Chenevier, G.: Families p-adiques de froms automorphes pour GLn. J. Reine Angew. Math., 570, 143–217 (2004)MathSciNetzbMATHGoogle Scholar
  13. [13]
    Chenevier, G.: Sur la densité des représentations cristallines de \({\rm{Gal}}(\overline {{{\rm{Q}}_p}} /{{\rm{Q}}_p})\). Math. Ann., 355, 1469–1525 (2013)MathSciNetCrossRefGoogle Scholar
  14. [14]
    Cherbonnier, F., Colmez, P.: Représentations p-adiques surconvergentes. Invent. Math., 133, 581–611 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Colmez, P.: Zéros supplémentaires de fonctions L p-adiques de formes modulaires. Algebra and Number Theory, 193–210, Hindustan Book Agency, Delhi, 2005zbMATHGoogle Scholar
  16. [16]
    Colmez, P.: Représentations triangulines de dimension 2. Astérisque, 319, 213–258 (2008)MathSciNetzbMATHGoogle Scholar
  17. [17]
    Colmez, P.: Représentations de GL2(Q p)and (φ, Γ)-modules. Astérisque, 330, 281–509 (2010)Google Scholar
  18. [18]
    Colmez, P.: Invariants \({\rm{Gal}}(\overline {{{\rm{Q}}_p}} /{{\rm{Q}}_p})\) et dérivées de valeurs propres de Frobenius. Astérisque, 331, 13–28 (2010)Google Scholar
  19. [19]
    Colmez, P.: La série principale unitaire de GL2(ℚp): Vecteurs localement analytiques, in “Automorphic forms and Galois representations Vol. 1”, London Math. Soc. Lect. Note Series, 415, 286–358 (2014)Google Scholar
  20. [20]
    Colmez, P., Fontaine, J. M.: Construction des représentations p-adiques semi-stables. Invent. Math., 140, 1–43 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Ding, Y.: \(\mathcal{L}\)-invariants and local-global compatibility for the group GL2/-F. Forum Math. Sigma, 4, e13, 49pp. (2016)CrossRefzbMATHGoogle Scholar
  22. [22]
    Ding, Y.: \(\mathcal{L}\)-invariants, partially de Rham families and local-global compatibility. Ann. Inst. Fourier (Grenoble), 67, 1457–1519 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Emerton, M.: On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Invent. Math. 164, 1–84 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Fontaine, J. M.: Représentations p-adiques des corps locaux. I. The Grothendieck Festschrift, vol. II. Prog. Math., 87, Birkhäuser Boston, MA, 249–309 (1990)zbMATHGoogle Scholar
  25. [25]
    Fontaine, J. M.: Le corps des périodes p-adiques. Astérisque, 223, 59–111 (1994)zbMATHGoogle Scholar
  26. [26]
    Fontaine, J. M.: Représentaions p-adiques semi-stables. Astérisque, 223, 113–184 (1994)zbMATHGoogle Scholar
  27. [27]
    Greenberg, R., Stevens, G.: p-adic L-functions and p-adic periods of modular forms. Invent. Math., 111, 407–447 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties. Ann. Math. Studies, 151, Princeton University Press, Princeton NJ, 2001zbMATHGoogle Scholar
  29. [29]
    Kedlaya, K.: Slope filtrations revisited. Doc. Math. 10, 447–525 (2005)MathSciNetzbMATHGoogle Scholar
  30. [30]
    Kedlaya, K., Liu, R.: On families of (φ, Γ)-modules. Algebra Number Theory, 4, 943–967 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Kedlaya, K., Pottharst, J., Xiao, L.: Cohomology of arithmetic families of (φ, Γ)-modules. J. Amer. Math. Soc., 27, 1043–1115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Kisin, M.: Overconvergent modular forms and the Fontaine—Mazur conjecture. Invent. Math., 153, 373–454 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Liu, R., Xie, B., Zhang, Y.: Locally analytic vectors of unitary principal series of GL2(ℚp). Ann. Sci. Ec. Norm. Super. (4), 45, 167–190 (2012)MathSciNetCrossRefGoogle Scholar
  34. [34]
    Mazur, B.: The theme of p-adic variation, in: Mathematics: frontiers and perspectives, 433–459, Amer. Math. Soc., Providence, 2000zbMATHGoogle Scholar
  35. [35]
    Mazur, B., Tate, J., Teitelbaum J.: On p-adic analogs of the conjectures of Birch and Swinnerton—Dyer. Invent. Math., 84, 1–48 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    Pottharst, J.: The \(\mathcal{L}\)-invariant, the dual \(\mathcal{L}\)-invariant, and families. Ann. Math. Qué., 40, 159–165 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Taylor, R., Yoshida T.: Compatibility oflocal and global Langlands correspondences. J. Amer. Math. Soc., 20, 467–493 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Xie, B.: On families of filtered (φ, N)-modules. Math. Res. Lett. 19, 667–689 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Zhang, Y.: \(\mathcal{L}\)-invariants and logarithmic derivatives of eigenvalues of Frobenius. Science China Mathematics, 57, 1587–1604 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019

Authors and Affiliations

  1. 1.Department of MathematicsEast China Normal UniversityShanghaiP. R. China

Personalised recommendations