Advertisement

Future effects of climate change on the suitability of wine grape production across Europe

  • M. F. CardellEmail author
  • A. Amengual
  • R. Romero
Original Article
Part of the following topical collections:
  1. Climate change impacts in the Mediterranean

Abstract

Climate directly influences the suitability of wine grape production. Modified patterns of temperature and precipitation due to climate change will likely affect this relevant socio-economic sector across Europe. In this study, prospects on the future of bioclimatic indices linked to viticultural zoning are derived from observed and projected daily meteorological data. Specifically, daily series of precipitation and 2-m maximum and minimum temperatures from the E-OBS data-set have been used as the regional observed baseline. Regarding projections, a suite of regional climate models (RCMs) from the European CORDEX project have been used to create projections of these variables under the RCP4.5 and RCP8.5 future emission scenarios. A quantile-quantile adjustment is applied to the simulated regional scenarios to properly project the RCM data at local scale. Our results suggest that wine grape growing will be negatively affected in southern Europe. We expect a reduction in table quality vines and wine grape production in this region due to a future increase in the cumulative thermal stress and dryness during the growing season. Furthermore, the projected precipitation decrease, and higher rates of evapotranspiration due to a warmer climate will likely increase water requirements. On the other hand, high-quality areas for viticulture will significantly extend northward in western and central Europe. The suitability zoning for the mid-century derived from this study could contribute to better design new strategies and management practices that would benefit the European winemaking sector.

Keywords

Climate change Europe Bioclimatic indices Wine grape production 

Notes

Acknowledgments

This research is framed within the CGL2014-52199-R (EXTREMO) and CGL2017-82868-R (COASTEPS) projects, both of them funded by the Spanish “Ministerio de Economía, Industria y Competitividad” and partially supported with FEDER funds. The first author was also supported by the FPI-CAIB (FPI/1931/2016) grant from the Conselleria d’Innovacio, Recerca i Turisme del Govern de les Illes Balears and the Fons Social Europeu. The authors acknowledge the EURO-CORDEX project, sponsored by the World Climate Research Program (WRCP). The E-OBS data set from the EU-FP6 project and data providers in the ECA and D project (eca.knmi.nl) are also acknowledged.

References

  1. Allen RG, Pereira LS, Raes D, Smith M, et al. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, Rome, 300(9):D05109Google Scholar
  2. Amengual A, Homar V, Romero R, Alonso S, Ramis C (2012) A statistical adjustment of regional climate model outputs to local scales: application to platja de Palma, Spain. J Clim 25(3):939–957.  https://doi.org/10.1175/JCLI-D-10-05024.1 CrossRefGoogle Scholar
  3. Amerine M, Winkler A et al (1944) Composition and quality of musts and wines of California grapes. Hilgardia 15(6):493–675.  https://doi.org/10.3733/hilg.v15n06p493 CrossRefGoogle Scholar
  4. Andrade C, Leite S, Santos J (2012) Temperature extremes in Europe: overview of their driving atmospheric patterns. Nat Hazards Earth Syst Sci 12(5):1671–1691.  https://doi.org/10.5194/nhess-12-1671-2012 CrossRefGoogle Scholar
  5. Benacchio S (1982) Algunas exigencias agroecológicas en 58 especies de cultivo con potencial de producción en el trópico americano. FONAIAP-Centro Nacional de Investigaciones Agropecuarias. Ministerio de Agricultura y Cría, Maracay, Venezuela, p 202Google Scholar
  6. Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31(1):491–543.  https://doi.org/10.1146/annurev.pp.31.060180.002423 CrossRefGoogle Scholar
  7. Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the seine basin climate for hydro-meteorological studies. Int J Climatol 27(12):1643–1655.  https://doi.org/10.1002/joc.1602 CrossRefGoogle Scholar
  8. Camps JO, Ramos MC (2012) Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-East Spain with a mediterranean climate. Int J Biometeorol 56(5):853–864.  https://doi.org/10.1007/s00484-011-0489-3 CrossRefGoogle Scholar
  9. Cardell M, Romero R, Amengual A, Homar V, Ramis C (2019) A quantile-quantile adjustment of the euro-cordex projections for temperatures and precipitation. Int J Climatol 39(6):2901–2918.  https://doi.org/10.1002/joc.5991 CrossRefGoogle Scholar
  10. Christensen JH, Christensen OB (2007) A summary of the prudence model projections of changes in European climate by the end of this century. Clim Chang 81(1):7–30.  https://doi.org/10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  11. Collins J, Perkins-Veazie P, Roberts W (2006) Lycopene: from plants to humans. HortScience 41(5):1135–1144.  https://doi.org/10.21273/HORTSCI.41.5.1135 CrossRefGoogle Scholar
  12. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57(1–2):16–26.  https://doi.org/10.1016/j.gloplacha.2006.11.030 CrossRefGoogle Scholar
  13. Dos Santos TP, Lopes CM, Rodrigues ML, de Souza CR, Maroco JP, Pereira JS, Silva JR, Chaves MM (2003) Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (vitis vinifera). Funct Plant Biol 30(6):663–671.  https://doi.org/10.1071/FP02180 CrossRefGoogle Scholar
  14. Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57(3):257–268Google Scholar
  15. Flexas J, Galmés J, Gallé A, Gulías J, Pou A, RIBAS-CARBO M, Tomàs M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121.  https://doi.org/10.1111/j.1755-0238.2009.00057.x CrossRefGoogle Scholar
  16. Fraga H, de Cortázar Atauri IG, Malheiro AC, Moutinho-Pereira J, Santos JA (2017) Viticulture in Portugal: a review of recent trends and climate change projections. Oeno One 51(2):61–69.  https://doi.org/10.20870/oeno-one.2016.0.0.1621 CrossRefGoogle Scholar
  17. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57(6):909–925.  https://doi.org/10.1007/s00484-012-0617-8 CrossRefGoogle Scholar
  18. Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, and New M (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophysi Res: Atmospheres, 113(D20). DOI:  https://doi.org/10.1029/2008JD010201
  19. Hidalgo L (2002). Tratado de viticultura general. Mundi-PrensaGoogle Scholar
  20. Ho CK, Stephenson DB, Collins M, Ferro CA, Brown SJ (2012) Calibration strategies: a source of additional uncertainty in climate change projections. Bull Am Meteorol Soc 93(1):21–26.  https://doi.org/10.1175/2011BAMS3110.1 CrossRefGoogle Scholar
  21. Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24(1):519–570.  https://doi.org/10.1146/annurev.pp.24.060173.002511 CrossRefGoogle Scholar
  22. Huglin P (1978). Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus de l’Académie d’Agriculture de France, 64, 1117–1126Google Scholar
  23. Ivanov MA, Kotlarski S (2017) Assessing distribution-based climate model bias correction methods over an alpine domain: added value and limitations. Int J Climatol 37(5):2633–2653.  https://doi.org/10.1002/joc.4870 CrossRefGoogle Scholar
  24. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) Euro-cordex: new high-resolution climate change projections for european impact research. Reg Environ Chang 14(2):563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  25. Jarvis C, Barlow E, Darbyshire R, Eckard R, Goodwin I (2017) Relationship between viticultural climatic indices and grape maturity in Australia. Int J Biometeorol 61(10):1849–1862.  https://doi.org/10.1007/s00484-017-1370-9 CrossRefGoogle Scholar
  26. Jones G, Duchene E, Tomasi D, Yuste J, Braslavska O, Schultz H, Martinez C, Boso S, Langellier F, Perruchot C, et al. (2005). Changes in European winegrape phenology and relationships with climate. In XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August, 2005, pages 54–61. Groupe d’Etude des Systemes de COnduite de la vigne (GESCO)Google Scholar
  27. Jones GV (2006). Climate and terroir: impacts of climate variability and change on wine. Fine wine and terroir: the geoscience perspective, (9):1–14Google Scholar
  28. Jones GV, Duff AA, Hall A, Myers JW (2010) Spatial analysis of climate in winegrape growing regions in the western United States. Am J Enol Vitic 61(3):313–326Google Scholar
  29. Kliewer W (1977) Effect of high temperatures during the bloom-set period on fruit-set, ovule fertility, and berry growth of several grape cultivars. Am J Enol Vitic 28(4):215–222Google Scholar
  30. Koundouras S, Van Leeuwen C, Seguin G, Glories Y (1999) Influence de l’alimentation en eau sur la croissance de la vigne, la maturation des raisins et les caractéristiques des vins en zone méditerranéenne (exemple de némée, grèce, cépage saint-georges, 1997). J Int Sci Vigne Vin 33(4):149–160Google Scholar
  31. Magalhães N (2008) Tratado de viticultura. a videira, a vinha e o terroir. Publicações Chaves Ferreira, Lisboa, p 605Google Scholar
  32. Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43(3):163–177.  https://doi.org/10.3354/cr00918 CrossRefGoogle Scholar
  33. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ and Zhao Z-C, 2007: Global climate projections. In: Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  34. Molitor D, Caffarra A, Sinigoj P, Pertot I, Hoffmann L, Junk J (2014) Late frost damage risk for viticulture under future climate conditions: a case study for the luxembourgish winegrowing region. Aust J Grape Wine Res 20(1):160–168.  https://doi.org/10.1111/ajgw.12059 CrossRefGoogle Scholar
  35. Moriondo M, Jones G, Bois B, Dibari C, Ferrise R, Trombi G, Bindi M (2013) Projected shifts of wine regions in response to climate change. Clim Chang 119(3–4):825–839.  https://doi.org/10.1007/s10584-013-0739-y CrossRefGoogle Scholar
  36. Mosedale JR, Abernethy KE, Smart RE, Wilson RJ, Maclean IM (2016) Climate change impacts and adaptive strategies: lessons from the grapevine. Glob Chang Biol 22(11):3814–3828.  https://doi.org/10.1111/gcb.13406 CrossRefGoogle Scholar
  37. Mosedale JR, Wilson RJ, Maclean IM (2015) Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PLoS One 10(10):e0141218.  https://doi.org/10.1371/journal.pone.0141218 CrossRefGoogle Scholar
  38. Moss R, Babiker W, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K et al (2008) Towards new scenarios for the analysis of emissions, climate change, impacts and response strategies. Intergovernmental Panel on Climate Change, Geneva, p 132Google Scholar
  39. Moutinho-Pereira J, Correia C, Gon ̧calves B, Bacelar E, Torres-Pereira J (2004) Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica 42(1):81–86CrossRefGoogle Scholar
  40. Mullins MG, Bouquet A, and Williams LE (1992). Biology of the grapevine. Cambridge University PressGoogle Scholar
  41. Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl R, Rogner H-H, and Victor N (2000). Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University PressGoogle Scholar
  42. Nesbitt A, Dorling S, Lovett A (2018) A suitability model for viticulture in England and wales: opportunities for investment, sector growth and increased climate resilience. J Land Use Sci 13(4):414–438.  https://doi.org/10.1080/1747423X.2018.1537312 CrossRefGoogle Scholar
  43. Perkins S, Pitman A, Holbrook N, McAneney J (2007) Evaluation of the ar4 cli- mate models simulated daily maximum temperature, minimum temperature, and precipita- tion over Australia using probability density functions. J Clim 20(17):4356–4376.  https://doi.org/10.1175/JCLI4253.1 CrossRefGoogle Scholar
  44. Sabir A, Kucukbasmaci A, Taytak M, Bilgin O, Jawshle A (2018) Sustainable viticulture practices on the face of climate change. Agr Res Technol: Open Access J 17(4):556033.  https://doi.org/10.19080/ARTOAJ.2018.17.556033 CrossRefGoogle Scholar
  45. Santos JA, Malheiro AC, Karremann MK, Pinto JG (2011) Statistical modelling of grapevine yield in the port wine region under present and future climate conditions. Int J Biometeorol 55(2):119–131.  https://doi.org/10.1007/s00484-010-0318-0 CrossRefGoogle Scholar
  46. Santos JA, Malheiro AC, Pinto JG, Jones GV (2012) Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Clim Res 51(1):89–103.  https://doi.org/10.3354/cr01056 CrossRefGoogle Scholar
  47. Spellman G (1999) Wine, weather and climate. Weather 54(8):230–239.  https://doi.org/10.1002/j.1477-8696.1999.tb07256.x CrossRefGoogle Scholar
  48. Teslic N, Zinzani G, Parpinello GP, Versari A (2018) Climate change trends, grape production, and potential alcohol concentration in wine from the “Romagna Sangiovese” appellation area (Italy). Theor Appl Climatol 131(1–2):793–803.  https://doi.org/10.1007/s00704-016-2005-5 CrossRefGoogle Scholar
  49. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94.  https://doi.org/10.2307/210739 CrossRefGoogle Scholar
  50. Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape- growing regions worldwide. Agric For Meteorol 124(1–2):81–97.  https://doi.org/10.1016/j.agrformet.2003.06.001 CrossRefGoogle Scholar
  51. Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E (2013) High-resolution med- cordex regional climate model simulations for hydrological impact studies: a first evaluation of the aladin-climate model in Morocco. Hydrol Earth Syst Sci 17(10):3721–3739.  https://doi.org/10.5194/hess-17-3721-2013 CrossRefGoogle Scholar
  52. Van Leeuwen C, Friant P, Chone X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55(3):207–217Google Scholar
  53. Van Leeuwen C, Schultz HR, de Cortazar-Atauri IG, Duchˆene E, Ollat N, Pieri P, Bois B, Goutouly J-P, Quénol H, Touzard J-M et al (2013) Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc Natl Acad Sci 110(33):E3051–E3052.  https://doi.org/10.1073/pnas.1307927110 CrossRefGoogle Scholar
  54. Winkler A (1974). Development and composition of grapes. General viticulture, pages 138–196Google Scholar
  55. Zahradníček P, Farda A, Skalák P, Trnka M, Meitner J, Rajdl K et al (2016) Projection of drought-inducing climate conditions in the Czech Republic according to euro-cordex models. Clim Res 70(2–3):179–193.  https://doi.org/10.3354/cr01424 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department de FísicaUniversitat de les Illes BalearsPalmaSpain

Personalised recommendations