Advertisement

Regional Environmental Change

, Volume 19, Issue 2, pp 363–377 | Cite as

Long-term ecological observatories needed to understand ecohydrological systems in the Anthropocene: a catchment-scale case study in Brittany, France

  • Zahra ThomasEmail author
  • Pauline Rousseau-Gueutin
  • Benjamin W. Abbott
  • Tamara Kolbe
  • Hugo Le Lay
  • Jean Marçais
  • François Rouault
  • Christophe Petton
  • Pascal Pichelin
  • Geneviève Le Hennaff
  • Hervé Squividant
  • Thierry Labasque
  • Jean-Raynald de Dreuzy
  • Luc Aquilina
  • Jacques Baudry
  • Gilles Pinay
Original Article

Abstract

Over the last half century, humans have become the dominant force driving many of Earth’s cycles. Intensive agriculture has simultaneously increased nutrient loading of pastoral landscapes and decreased the capacity of these ecosystems to retain or remove excess nutrients. Widespread degradation of terrestrial and aquatic ecosystems has triggered the establishment of ecological observatories, including the Zone Atelier Armorique (ZAAr) in western France, a part of the International Long-Term Socio-Ecological Research (LTSER) network. The ZAAr includes a patchwork of land covers and uses, including old-growth forests, intensively cultivated row crops, and ancient bocage fields surrounded by hedgerows. In addition to traditional ecological research at ZAAr, the last 8 years have seen the development of multiproxy and multiscale approaches to address surface and groundwater quality. Here, we present a comprehensive analysis of this 8-year dataset, including vegetation, soil water storage, and stream and groundwater chemistry. We observed contrasting responses of different catchment components to climate forcing and direct disturbance. Our results highlight a clear relationship between land use and surface water quality, while groundwater quality appeared largely unrelated to land use, suggesting strong differences in aquifer nitrogen removal rates. There were large differences in nutrient fluxes among dry and wet years, with multiyear memory effects apparent for some parameters. Given such complex interactions, including emergent dynamics and decadal to centennial time lags, we conclude that multidimensional observations such as those supported by the ZAAr and other LTSER sites, are critical to understanding ecohydrological systems in the Anthropocene.

Keywords

Long-term monitoring Anthropogenic forcing Land use Ecosystem vulnerability Ecosystem resilience Multiproxy Multiscale Heterogeneity 

Notes

Acknowledgments

This research was supported in part by the French National Research Agency (ANR; Project ANR-08-STRA-01) and the European Union Inter-national Training Network “Ecohydrological interfaces as critical hotspots for transformations of ecosystem exchange fluxes and biogeochemical cycling” (ITN–INTERFACES - FP7-PEOPLE-2013-No. 607150). This research was also supported by the French EC2CO grant “Caractérisation hydrologique et biogéochimique de la denitrification dans les paysages.” The study was supported by the LTSER “Zone Atelier Armorique.” We thank all the farmers of the ZAAr who kindly accepted the installation of the experiments in their fields. We also thank all the staff of the ILSTER Zone Atelier Armorique, especially the technicians of OSUR-INRA-AGROCAMPUS who helped in sampling and laboratory analysis.

Supplementary material

10113_2018_1444_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2248 kb)

References

  1. Abbott BW, Baranov V, Mendoza-Lera C, Nikolakopoulou M, Harjung A, Kolbe T, Balasubramanian MN, Vaessen TN, Ciocca F, Campeau A, Wallin MB, Romeijn P, Antonelli M, Gonçalves J, Datry T, Laverman AM, de Dreuzy J-R, Hannah DM, Krause S, Oldham C, Pinay G (2016) Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth Sci Rev 160:19–42.  https://doi.org/10.1016/j.earscirev.2016.06.014 CrossRefGoogle Scholar
  2. Abbott BW, Gruau G, Zarnetske JP, Moatar F, Barbe L, Thomas Z, Fovet O, Kolbe T, Gu S, Pierson-Wickmann AC, Davy P, Pinay G (2017) Unexpected spatial stability of water chemistry in headwater stream networks. Ecol Lett 21:296–308.  https://doi.org/10.1111/ele.12897 CrossRefGoogle Scholar
  3. Abbott BW, Moatar F, Gauthier O, Fovet O, Antoine V, Ragueneau O (2018) Trends and seasonality of river nutrients in agricultural catchments: 18years of weekly citizen science in France. Sci Total Environ 624:845–858.  https://doi.org/10.1016/j.scitotenv.2017.12.176 CrossRefGoogle Scholar
  4. Alagona P, Sandlos J, Wiersma Y (2012) Past imperfect: using historical ecology and baseline data for conservation and restoration projects in North America. Environ Philos 9:49–70.  https://doi.org/10.5840/envirophil2012914 CrossRefGoogle Scholar
  5. Alignier A, Baudry J (2015) Changes in management practices over time explain most variation in vegetation of field margins in Brittany, France. Agric Ecosyst Environ 211:164–172.  https://doi.org/10.1016/j.agee.2015.06.008 CrossRefGoogle Scholar
  6. Alignier A, Baudry J (2016) Is plant temporal beta diversity of field margins related to changes in management practices? Acta Oecol 75:1–7.  https://doi.org/10.1016/j.actao.2016.06.008 CrossRefGoogle Scholar
  7. Alvarez-Cabria M, Barquin J, Penas FJ (2016) Modelling the spatial and seasonal variability of water quality for entire river networks: relationships with natural and anthropogenic factors. Sci Total Environ 545-546:152–162.  https://doi.org/10.1016/j.scitotenv.2015.12.109 CrossRefGoogle Scholar
  8. Aquilina L, Vergnaud-Ayraud V, Labasque T, Bour O, Molenat J, Ruiz L, de Montety V, De Ridder J, Roques C, Longuevergne L (2012) Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters. Sci Total Environ 435:167–178.  https://doi.org/10.1016/j.scitotenv.2012.06.028 CrossRefGoogle Scholar
  9. Aquilina L, Poszwa A, Walter C, Vergnaud V, Pierson-Wickmann AC, Ruiz L (2012) Long-Term Effects of High Nitrogen Loads on Cation and Carbon Riverine Export in Agricultural Catchments. Environ Sci Technol 46:9447–9455.  https://doi.org/10.1021/es301715t CrossRefGoogle Scholar
  10. Baird J, Jollineau M, Plummer R, Valenti J (2016) Exploring agricultural advice networks, beneficial management practices and water quality on the landscape: a geospatial social-ecological systems analysis. Land Use Policy 51:236–243.  https://doi.org/10.1016/j.landusepol.2015.11.017 CrossRefGoogle Scholar
  11. Baudry J, Bunce RGH, Burel F (2000) Hedgerows: An international perspective on their origin, function and management. J Environ Manag 60:7–22.  https://doi.org/10.1006/jema.2000.0358 CrossRefGoogle Scholar
  12. Baudry J, Thenail C (2004) Interaction between farming systems, riparian zones, and landscape patterns: a case study in western France. Landsc Urban Plan 67:121–129.  https://doi.org/10.1016/S0169-2046(03)00033-1
  13. Baudry J, Alignier A, Thomas Z (2017) Interdisciplinarité et représentation de la complexité des systèmes socio-écologiques : recherches sur la zone atelier Armorique. Natures Sciences Sociétés 25:S50–S54.  https://doi.org/10.1051/nss/2017032 CrossRefGoogle Scholar
  14. Ben Maamar S, Aquilina L, Quaiser A, Pauwels H, Michon-Coudouel S, Vergnaud-Ayraud V, Labasque T, Roques C, Abbott BW, Dufresne A (2015) Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths. Front Microbiol 6:1457.  https://doi.org/10.3389/fmicb.2015.01457 CrossRefGoogle Scholar
  15. Berkhout F (2014) Anthropocene Futures. Anthropocene Rev 1:154–159.  https://doi.org/10.1177/2053019614531217 CrossRefGoogle Scholar
  16. Bouraoui F, Grizzetti B (2011) Long term change of nutrient concentrations of rivers discharging in European seas. Sci Total Environ 409:4899–4916.  https://doi.org/10.1016/j.scitotenv.2011.08.015 CrossRefGoogle Scholar
  17. Bretagnolle V, Berthet E, Gross N, Gauffre B, Plumejeaud C, Houte S, Badenhausser I, Monceau K, Allier F, Monestiez P, Gaba S (2018) Towards sustainable and multifunctional agriculture in farmland landscapes: lessons from the integrative approach of a French LTSER platform. Sci Total Environ 627:822–834.  https://doi.org/10.1016/j.scitotenv.2018.01.142 CrossRefGoogle Scholar
  18. Burt TP, Pinay G (2005) Linking hydrology and biogeochemistry in complex landscapes. Prog Phys Geogr 29:297–316.  https://doi.org/10.1191/0309133305pp450ra CrossRefGoogle Scholar
  19. Burt TP, Howden NJK, Worrall F, McDonnell JJ (2011) On the value of long-term, low-frequency water quality sampling: avoiding throwing the baby out with the bathwater. Hydrol Process 25:828–830.  https://doi.org/10.1002/hyp.7961 CrossRefGoogle Scholar
  20. Caubel-Forget V, Grimaldi C, Rouault F (2001) Contrasted dynamics of nitrate and chloride in groundwater submitted to the influence of a hedge. C R Acad Sci Paris 332:107–113Google Scholar
  21. Cheverry C (1998) Agriculture intensive et qualité des eaux. Science Update, INRA édition, Editeur C. Cheverry, p 297Google Scholar
  22. Clement J, Aquilina L, Bour O, Plaine K, Burt TP, Pinay G (2003) Hydrological flow paths and nitrate removal rates within a riparian floodplain along a fourth-order stream in Brittany (France). Hydrol Process 17:1177–1195.  https://doi.org/10.1002/hyp.1192 CrossRefGoogle Scholar
  23. Crutzen PJ (2002) Geology of mankind. Nature 415:23–23CrossRefGoogle Scholar
  24. Dick J, Orenstein DE, Holzer JM, Wohner C, Achard AL, Andrews C, Avriel-Avni N, Beja P, Blond N, Cabello J, Chen C, Díaz-Delgado R, Giannakis GV, Gingrich S, Izakovicova Z, Krauze K, Lamouroux N, Leca S, Melecis V, Miklós K, Mimikou M, Niedrist G, Piscart C, Postolache C, Psomas A, Santos-Reis M, Tappeiner U, Vanderbilt K, Van Ryckegem G (2018) What is socio-ecological research delivering? A literature survey across 25 international LTSER platforms. Sci Total Environ 622-623:1225–1240.  https://doi.org/10.1016/j.scitotenv.2017.11.324 CrossRefGoogle Scholar
  25. European Nitrate Directive (1991) Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sourcesGoogle Scholar
  26. Forman RTT, Baudry J (1984) Hedgerows and hedgerow networks in landscape ecology. Environ Manag 8:495–510.  https://doi.org/10.1007/bf01871575 CrossRefGoogle Scholar
  27. Gao HK, Hrachowitz M, Sriwongsitanon N, Fenicia F, Gharari S, Savenije HHG (2016) Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region. Water Resour Res 52:7999–8022.  https://doi.org/10.1002/2016wr019574 CrossRefGoogle Scholar
  28. Gilliam JW (1994) Riparian Wetlands and Water Quality. J Environ Qual 23:896–900CrossRefGoogle Scholar
  29. Green SR, Kirkham MB, Clothier BE (2006) Root uptake and transpiration: From measurements and models to sustainable irrigation. Agric Water Manag 86:165–176.  https://doi.org/10.1016/j.agwat.2006.06.008 CrossRefGoogle Scholar
  30. Grimaldi C, Fossey M, Thomas Z, Fauvel Y, Merot P (2012) Nitrate attenuation in soil and shallow groundwater under a bottomland hedgerow in a European farming landscape. Hydrol Process 26:3570–3578.  https://doi.org/10.1002/hyp.8441 CrossRefGoogle Scholar
  31. Guo ZL, Zhong C, Cai CF, Ding SW, Wang ZM (2007) Nitrogen competition in contour hedgerow systems in subtropical China. Nutr Cycl Agroecosyst 81:71–83.  https://doi.org/10.1007/s10705-007-9153-z CrossRefGoogle Scholar
  32. Haag D, Kaupenjohann M (2001) Landscape fate of nitrate fluxes and emissions in Central Europe -A critical review of concepts, data, and models for transport and retention. Agric Ecosyst Environ 86:1–21.  https://doi.org/10.1016/s0167-8809(00)00266-8 CrossRefGoogle Scholar
  33. Haase P, Tonkin JD, Stoll S, Burkhard B, Frenzel M, Geijzendorffer IR, Hauser C, Klotz S, Kuhn I, McDowell WH, Mirtl M, Muller F, Musche M, Penner J, Zacharias S, Schmeller DS (2018) The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Total Environ 613-614:1376–1384.  https://doi.org/10.1016/j.scitotenv.2017.08.111 CrossRefGoogle Scholar
  34. Hall RO, Tank JL, Sobota DJ, Mulholland PJ, O'Brien JM, Dodds WK, Webster JR, Valett HM, Poole GC, Peterson BJ, Meyer JL, McDowell WH, Johnson SL, Hamilton SK, Grimm NB, Gregory SV, Dahm CN, Cooper LW, Ashkenas LR, Thomas SM, Sheibley RW, Potter JD, Niederlehner BR, Johnson LT, Helton AM, Crenshaw CM, Burgin AJ, Bernot MJ, Beaulieu JJ, Arango CP (2009) Nitrate removal in stream ecosystems measured by N-15 addition experiments: Total uptake. Limnol Oceanogr 54:653–665.  https://doi.org/10.4319/lo.2009.54.3.0653 CrossRefGoogle Scholar
  35. Helton AM, Poole GC, Payn RA, Izurieta C, Stanford JA (2012) Scaling flow path processes to fluvial landscapes: an integrated field and model assessment of temperature and dissolved oxygen dynamics in a river-floodplain-aquifer system. Journal of Geophysical Research: Biogeosciences 117:n/a-n/a doi: https://doi.org/10.1029/2012jg002025
  36. Helton AM, Hall RO, Bertuzzo E (2018) How network structure can affect nitrogen removal by streams. Freshw Biol 63:128–140.  https://doi.org/10.1111/fwb.12990 CrossRefGoogle Scholar
  37. Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20.  https://doi.org/10.1016/j.hal.2008.08.015 CrossRefGoogle Scholar
  38. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95.  https://doi.org/10.1016/j.jhydrol.2005.07.003 CrossRefGoogle Scholar
  39. Jasechko S, Perrone D, Befus KM, Bayani Cardenas M, Ferguson G, Gleeson T, Luijendijk E, McDonnell JJ, Taylor RG, Wada Y, Kirchner JW (2017) Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat Geosci 10:425–429.  https://doi.org/10.1038/NGEO2943 CrossRefGoogle Scholar
  40. Kolbe T, Marçais J, Thomas Z, Abbott BW, de Dreuzy J-R, Rousseau-Gueutin P, Aquilina L, Labasque T, Pinay G (2016) Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J Hydrol 543(Part A):31–46.  https://doi.org/10.1016/j.jhydrol.2016.05.020 CrossRefGoogle Scholar
  41. Liu J, Hull V, Godfray HCJ, Tilman D, Gleick P, Hoff H, Pahl-Wostl C, Xu Z, Chung MG, Sun J, Li S (2018) Nexus approaches to global sustainable development. Nature Sustainability 1:466–476.  https://doi.org/10.1038/s41893-018-0135-8 CrossRefGoogle Scholar
  42. Loaiciga HA, Valdes JB, Vogel R, Garvey J, Schwarz H (1996) Global warming and the hydrologic cycle. J Hydrol 174:83–127CrossRefGoogle Scholar
  43. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems 6:301–312.  https://doi.org/10.1007/s10021-003-0161-9 CrossRefGoogle Scholar
  44. Malone ET, Abbott BW, Klaar MJ, Kidd C, Sebilo M, Milner AM, Pinay G (2018) Decline in ecosystem δ13C and mid-successional nitrogen loss in a two-century postglacial chronosequence. Ecosystems 21:1659–1675.  https://doi.org/10.1007/s10021-018-0245-1 CrossRefGoogle Scholar
  45. Marçais J, de Dreuzy JR, Ginn TR, Rousseau-Gueutin P, Leray S (2015) Inferring transit time distributions from atmospheric tracer data: assessment of the predictive capacities of lumped parameter models on a 3D crystalline aquifer model. J Hydrol 525:619–631.  https://doi.org/10.1016/j.jhydrol.2015.03.055 CrossRefGoogle Scholar
  46. Marcais J, Gauvain A, Labasque T, Abbott BW, Pinay G, Aquilina L, Chabaux F, Viville D, de Dreuzy JR (2018) Dating groundwater with dissolved silica and CFC concentrations in crystalline aquifers. Sci Total Environ 636:260–272.  https://doi.org/10.1016/j.scitotenv.2018.04.196 CrossRefGoogle Scholar
  47. Meals D, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices. A Review Journal of Environmental Quality 39(1):85–96.  https://doi.org/10.2134/jeq2009.0108 CrossRefGoogle Scholar
  48. Merot P (1999) The influence of hedgerow systems on the hydrology of agricultural catchments in a temperate climate. Agronomie 19:655–669.  https://doi.org/10.1051/agro:19990801 CrossRefGoogle Scholar
  49. Meybeck M (2003) Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philos Trans R Soc Lond Ser B Biol Sci 358:1935–1955.  https://doi.org/10.1098/rstb.2003.1379 CrossRefGoogle Scholar
  50. Mirtl M, Borer ET, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Muraoka H, Orenstein DE, Pauw JC, Peterseil J, Shibata H, Wohner C, Yu X, Haase P (2018) Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci Total Environ 626:1439–1462.  https://doi.org/10.1016/j.scitotenv.2017.12.001 CrossRefGoogle Scholar
  51. Moatar F, Abbott BW, Minaudo C, Curie F, Pinay G (2017) Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, andmajor ions. Water Resour Res 53:1270–1287.  https://doi.org/10.1002/2016WR019635 CrossRefGoogle Scholar
  52. Monastersky R (2015) Anthropocene : The human age. Nature 519:144–147.  https://doi.org/10.1038/519144a CrossRefGoogle Scholar
  53. Paltineanu IC, Starr JL (1997) Real-time soil water dynamics using multisensor capacitance probes: Laboratory calibration. Soil Sci Soc Am J 61:1576–1585CrossRefGoogle Scholar
  54. Perrot T, Rossi N, Ménesguen A, Dumas F (2014) Modelling green macroalgal blooms on the coasts of Brittany, France to enhance water quality management. J Mar Syst 132:38–53.  https://doi.org/10.1016/j.jmarsys.2013.12.010 CrossRefGoogle Scholar
  55. Pinay G, Bernal S, Abbott BW, Lupon A, Marti E, Sabater F, Krause S (2018) Riparian corridors: a new conceptual framework for assessing nitrogen buffering across biomes Frontiers in Environmental Science 6 doi: https://doi.org/10.3389/fenvs.2018.00047
  56. Poblador S, Thomas Z, Rousseau-Gueutin P, Sabaté S, Sabater F (2018) Riparian forest transpiration under the current and projected Mediterranean climate: effects on soil water and nitrate uptake. Ecohydrology: e2043:1–16  https://doi.org/10.1002/eco.2043
  57. Poisvert C, Curie F, Moatar F (2016) Annual agricultural N surplus in France over a 70-year period. Nutr Cycl Agroecosyst 107:63–78.  https://doi.org/10.1007/s10705-016-9814-x CrossRefGoogle Scholar
  58. Rodvang SJ, Simpkins WW (2001) Agricultural contaminants in Quaternary aquitards: A review of occurrence and fate in North America. Hydrogeol J 9:44–59CrossRefGoogle Scholar
  59. Rudel TK, Schneider L, Uriarte M, Turner BL 2nd, DeFries R, Lawrence D, Geoghegan J, Hecht S, Ickowitz A, Lambin EF, Birkenholtz T, Baptista S, Grau R (2009) Agricultural intensification and changes in cultivated areas, 1970-2005. Proc Natl Acad Sci U S A 106:20675–20680.  https://doi.org/10.1073/pnas.0812540106 CrossRefGoogle Scholar
  60. Savenije HHG, Hoekstra AY, van der Zaag P (2014) Evolving water science in the Anthropocene. Hydrol Earth Syst Sci 18:319–332.  https://doi.org/10.5194/hess-18-319-2014 CrossRefGoogle Scholar
  61. Schelker J, Sponseller R, Ring E, Högbom L, Löfgren S, Laudon H (2016) Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms. Biogeosciences 13:1–12.  https://doi.org/10.5194/bg-13-1-2016 CrossRefGoogle Scholar
  62. Singh B, Sekhon GS (1979) Nitrate pollution of groundwater from farm use of nitrogen fertilizers - Review. Agric Environ 4:207–225.  https://doi.org/10.1016/0304-1131(79)90022-5 CrossRefGoogle Scholar
  63. Slavik K, Peterson BJ, Deegan lA, Bowden WB, Hershey AE, Hobbie JE (2004) Long-term responses of the kuparuk river ecosystem to phosphorus fertilization. Ecology 85:939–954.  https://doi.org/10.1890/02-4039 CrossRefGoogle Scholar
  64. Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36:614–621CrossRefGoogle Scholar
  65. Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S (2015) Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855.  https://doi.org/10.1126/science.1259855 CrossRefGoogle Scholar
  66. Tesoriero AJ, Liebscher H, Cox SE (2000) Mechanism and rate of denitrification in an agricultural watershed: electron and mass balance along groundwater flow paths. Water Resour Res 36:1545–1559.  https://doi.org/10.1029/2000wr900035 CrossRefGoogle Scholar
  67. Thomas Z, Abbott B (2018) Hedgerows reduce nitrate flux at hillslope and catchment scales via root uptake and secondary effects. J Contam Hydrol.  https://doi.org/10.1016/j.jconhyd.2018.07.002
  68. Thomas Z, Abbott B, Troccaz O, Baudry J, Pinay G (2016a) Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments. Biogeosciences 13:1863–1875.  https://doi.org/10.5194/bg-13-1863-2016 CrossRefGoogle Scholar
  69. Thomas Z, Rousseau-Gueutin P, Kolbe T, Abbott BW, Marçais J, Peiffer S, Frei S, Bishop K, Pichelin P, Pinay G, de Dreuzy JR (2016b) Constitution of a catchment virtual observatory for sharing flow and transport models outputs. J Hydrol 543(Part A):59–66.  https://doi.org/10.1016/j.jhydrol.2016.04.067 CrossRefGoogle Scholar
  70. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677.  https://doi.org/10.1038/nature01014 CrossRefGoogle Scholar
  71. Trauth N, Schmidt C, Vieweg M, Oswald SE, Fleckenstein JH (2015) Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions. Water Resour Res 51:2243–2263.  https://doi.org/10.1002/2014wr015857 CrossRefGoogle Scholar
  72. van Grinsven HJM, ten Berge HFM, Dalgaard T, Fraters B, Durand P, Hart A, Hofman G, Jacobsen BH, Lalor STJ, Lesschen JP, Osterburg B, Richards KG, Techen AK, Vertès F, Webb J, Willems WJ (2012) Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 9:5143–5160.  https://doi.org/10.5194/bg-9-5143-2012 CrossRefGoogle Scholar
  73. Van Meter KJ, Basu NB, Veenstra JJ, Burras CL (2016) The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ Res Lett 11:035014.  https://doi.org/10.1088/1748-9326/11/3/035014 CrossRefGoogle Scholar
  74. Vidon PGF, Hill AR (2004) Landscape controls on the hydrology of stream riparian zones. J Hydrol 292:210–228.  https://doi.org/10.1016/j.jhydrol.2004.01.005 CrossRefGoogle Scholar
  75. Worrall F, Burt TP, Howden NJK, Whelan MJ (2012) The fluvial flux of nitrate from the UK terrestrial biosphere – An estimate of national-scale in-stream nitrate loss using an export coefficient model. J Hydrol 414-415:31–39.  https://doi.org/10.1016/j.jhydrol.2011.09.020 CrossRefGoogle Scholar
  76. Worrall F, Howden NJK, Burt TP (2015) Evidence for nitrogen accumulation: the total nitrogen budget of the terrestrial biosphere of a lowland agricultural catchment. Biogeochemistry 123:411–428.  https://doi.org/10.1007/s10533-015-0074-7 CrossRefGoogle Scholar
  77. Zalasiewicz J, Waters CN, Williams M, Barnosky AD, Cearreta A, Crutzen P, Ellis E, Ellis MA, Fairchild IJ, Grinevald J, Haff PK, Hajdas I, Leinfelder R, McNeill J, Odada EO, Poirier C, Richter D, Steffen W, Summerhayes C, Syvitski JPM, Vidas D, Wagreich M, Wing SL, Wolfe AP, Zhisheng A, Oreskes N (2015) When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat Int 383:196–203.  https://doi.org/10.1016/j.quaint.2014.11.045 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zahra Thomas
    • 1
    Email author
  • Pauline Rousseau-Gueutin
    • 2
  • Benjamin W. Abbott
    • 3
  • Tamara Kolbe
    • 4
  • Hugo Le Lay
    • 1
  • Jean Marçais
    • 4
  • François Rouault
    • 1
  • Christophe Petton
    • 4
  • Pascal Pichelin
    • 1
  • Geneviève Le Hennaff
    • 1
  • Hervé Squividant
    • 1
  • Thierry Labasque
    • 4
  • Jean-Raynald de Dreuzy
    • 4
  • Luc Aquilina
    • 4
  • Jacques Baudry
    • 5
  • Gilles Pinay
    • 6
  1. 1.AGROCAMPUS OUESTINRA, UMR SASRennesFrance
  2. 2.Rennes, Sorbonne Paris CitéEHESPParisFrance
  3. 3.Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUSA
  4. 4.Géosciences Rennes, UMR 6118 CNRSUniversité de Rennes 1, Campus de BeaulieuRennes CedexFrance
  5. 5.INRA, UMR 980, BAGAPRennesFrance
  6. 6.Irstea Lyon, RiverLyUniversity of LyonVilleurbanneFrance

Personalised recommendations