Advertisement

Long-term responses of mountain forests to environmental change in West-Central Mexico

  • Blanca Lorena Figueroa-Rangel
  • Miguel Olvera-Vargas
Original Article
  • 8 Downloads

Abstract

This study is an important contribution to the International Long-term Ecological Research Network (ILTER), because it presents the local responses of soil and plant composition to global and regional climatic oscillations of the last millennia in Mexico. Mountain forests are ecosystems that have been constantly threatened by both anthropogenic and climate disturbances, mainly over the Late Holocene. By using palaeoecological techniques with fossil pollen and geochemical elements as proxies, this study incorporates the relationship of trees, herbs and epiphytes with dry and humid climate events. High-temporal resolution in the chronologies allowed the assessment of vegetation changes (every ~ 30 years) and soil geochemical elements in three forests located close (< 8 km) to each other. Our results showed that pine forest contracted along the dry periods of the Little Ice Age (AD 1350–1850), the Medieval Climate Anomaly (AD 800 to 1200) and the Late Classic Drought (AD 600 to 800). However, it expanded in the humid period (AD 1200 to 1350). Cloud forest was the most susceptible ecosystem to the above climate anomalies; trees contracted in periods of aridity and expanded in humid periods. The signature for the transitional forest was confounding: trees increased partially in both dry and humid periods with a well-correlated decrease in epiphytes. Soil losses were common in dry periods while fires increased along the last ~ 300 years.

Keywords

Cloud forest Pine forest Little Ice Age Medieval Climate Anomaly Palaeoecology Soil 

Notes

Acknowledgements

This research was supported by Mexican National Council for Science and Technology (CONACyT, project 106435) and the Council for Science and Technology in the state of Jalisco (COECyTJal, project 5-2010-875). The comments of Dr. Christopher Reyer and two anonymous reviewers substantially improved this paper.

Supplementary material

10113_2018_1435_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22.1 kb)
10113_2018_1435_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 18 kb)

References

  1. Acevedo-Sandoval O, Ortiz-Hernández E, Cruz-Sánchez M, Cruz-Chávez E (2004) El papel de óxidos de hierro en suelos. Terra Latinoamericana 22:485–497 redalyc.org/pdf/573/57311096013.pdf Google Scholar
  2. Almeida-Lenero L, Hooghiemstra H, Cleef AM, Van Geel B (2005) Holocene climatic and environmental change from pollen records of lakes Zempoala and Quila, central Mexican highlands. Rev Palaeobot Palynol 136:63–92.  https://doi.org/10.1016/j.revpalbo.2005.05.001 CrossRefGoogle Scholar
  3. Arnauld C, Metcalfe S, Petrequin P (1997) Holocene climatic change in the Zacapu Lake Basin, Michoacan: synthesis of results. Quat Int 43/44:173–179.  https://doi.org/10.1016/S1040-6182(97)00033-5 CrossRefGoogle Scholar
  4. Beach T, Dunning N, Luzzadder-Beach S, Cook DE, Lohse J (2006) Impacts of the ancient Maya on soils and soil erosion in the central Maya lowlands. Catena 65:166–178.  https://doi.org/10.1016/j.catena.2005.11.007 CrossRefGoogle Scholar
  5. Beekman CS (2010) Recent research in Western Mexican archaeology. J Archaeol Res 18:41–109.  https://doi.org/10.1007/s10814-009-9034-x CrossRefGoogle Scholar
  6. Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and paleohydrology, vol 4. Wiley, New York, pp 423–455.  https://doi.org/10.1002/gea.3340040208 CrossRefGoogle Scholar
  7. Bennett KD (2005) PSIMPOLL 4.25 and PSCOMB 1.03: C programs for plotting pollen diagrams and analysing pollen data. Uppsala Universitet, Uppsala http://www.chrono.qub.ac.uk/psimpoll/psimpoll_manual/4.27/psimpoll.htm
  8. Birks HJB (2012) Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int J Biodivers Sci Ecosyst Serv Manag 8:292–304.  https://doi.org/10.1080/21513732.2012.701667 CrossRefGoogle Scholar
  9. Birks HJB, Heiri O, Seppä H, Bjune A (2010) Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. Open Ecol J 3:68–110.  https://doi.org/10.2174/1874213001003020068 CrossRefGoogle Scholar
  10. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474.  https://doi.org/10.1214/11-BA618 projecteuclid.org/download/pdf_1/euclid.ba/1339616472 CrossRefGoogle Scholar
  11. Borromeia AM, Candel MS, Musotto LL, Cusminsky G, Adrián Martínez M, Coviaga CA, Ponceb JF, Coronato A (2018) Late Holocene wet/dry intervals from Fuegian steppe at Laguna Carmen, southern Argentina, based on a multiproxy record. Palaeogeogr Palaeoclimatol Palaeoecol 499:56–71.  https://doi.org/10.1016/j.palaeo.2018.03.008 CrossRefGoogle Scholar
  12. Calcote R (1995) Pollen source area and pollen productivity: evidence from forest hollows. J Ecol 83:591–602.  https://doi.org/10.2307/2261627 CrossRefGoogle Scholar
  13. Calcote R (1998) Identifying forest stand types using pollen from forest hollows. The Holocene 8:423–432.  https://doi.org/10.1191/095968398670894847 CrossRefGoogle Scholar
  14. Castellanos J, Jaramillo VJ, Sanford RL, Kauffman JB (2001) Slash-and-burn effects on fine root biomass and productivity in a tropical dry forest ecosystem in Mexico. For Ecol Manag 148:41–50.  https://doi.org/10.1016/S0378-1127(00)00523-5 CrossRefGoogle Scholar
  15. Cerano-Paredes J, Villanueva-Díaz J, Cervantes-Martínez R, Fulé P, Yocom L, Esquivel-Arriaga G, Jardel-Peláez E (2015) Historia de incendios en un bosque de pino de la Sierra de Manantlán, Jalisco, México Bosque 36:41–52 doi:  https://doi.org/10.4067/S0717-92002015000100005 CrossRefGoogle Scholar
  16. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10.  https://doi.org/10.1007/s00442-004-1788-8 CrossRefGoogle Scholar
  17. Chen J, Chen F, Feng S, Huang W, Liu J, Zhou A (2015) Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms. Quat Sci Rev 107:98–111.  https://doi.org/10.1016/j.quascirev.2014.10.012 CrossRefGoogle Scholar
  18. Clark RL (1982) Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen Spores 24:523–532.  https://doi.org/10.1016/j.quaint.2016.04.017 CrossRefGoogle Scholar
  19. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013; the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York www.climatechange2013.org Google Scholar
  20. Conserva ME, Byrne R (2002) Late Holocene vegetation change in the Sierra Madre Oriental of Central Mexico. Quat Res 58:122–129.  https://doi.org/10.1006/qres.2002.2348 sciencedirect.com/science/article/pii/S0033589402923483 CrossRefGoogle Scholar
  21. Corlett RT (2011) Impacts of warming on tropical lowland rainforests. Trends Ecol Evol 26:606–613.  https://doi.org/10.1016/j.tree.2011.06.015 CrossRefGoogle Scholar
  22. Cuna E, Zawisa E, Caballero M, Ruiz-Fernández AC, Lozano-García S, Alcocer J (2014) Environmental impacts of Little Ice Age cooling in Central Mexico recorded in the sediments of a tropical alpine lake. J Paleolimnol 51:1–14.  https://doi.org/10.1007/s10933-013-9748-0 CrossRefGoogle Scholar
  23. Cusack DF, Karpman J, Ashdown D, Cao Q, Ciochina M, Halterman S, Lydon S, Neupane A (2016) Global change effects on humid tropical forests: evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Rev Geophys 54:523–610.  https://doi.org/10.1002/2015RG000510 CrossRefGoogle Scholar
  24. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Kéfi S, Livina V, Seekel DA, van Nes HE, Scheffer M (2012) Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One 7:e41010.  https://doi.org/10.1371/journal.pone.0041010 CrossRefGoogle Scholar
  25. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition. J Sediment Petrol 44:242–248.  https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D CrossRefGoogle Scholar
  26. Del Castillo-Batista AP, Figueroa-Rangel BL, Lozano-García S, Olvera-Vargas M, Cuevas-Guzmán R (2016) Historia florística y ambiental del bosque mesófilo de montaña en el centro-occidente de México durante la pequeña edad de hielo. Revista Mexicana de Biodiversidad 87:216–229.  https://doi.org/10.1016/j.rmb.2016.01.021 CrossRefGoogle Scholar
  27. Del Castillo-Batista AP, Figueroa-Rangel BL, Lozano-García S, Olvera-Vargas M, Cuevas-Guzmán R (2018) 1580 años de impacto humano y cambio climático en la dinámica del bosque de Pinus-Quercus-Abies en el centro-occidente de México. Revista Mexicana de Biodiversidad 89:208–225.  https://doi.org/10.22201/ib.20078706e.2018.1.2117 CrossRefGoogle Scholar
  28. Delcourt HR, Delcourt PA, Webb T III (1983) Dynamic plant ecology: the spectrum of vegetation change in time and space. Quat Sci Rev 1:153–175.  https://doi.org/10.1016/0277-3791(82)90008-7 CrossRefGoogle Scholar
  29. Denevan WM (1992) The pristine myth: the landscape of the Americas in 1492. Ann Assoc Am Geogr 82:369–385.  https://doi.org/10.1111/j.1467-8306.1992.tb01965.x CrossRefGoogle Scholar
  30. Ellingson LJ, Kauffman JB, Cummings DL, Sanford RL, Jaramillo VJ (2000) Soil N dynamics associated with deforestation, biomass burning, and pasture conversion in a Mexican tropical dry forest. For Ecol Manag 137:41–51.  https://doi.org/10.1016/s0378-1127(99)00311-4 CrossRefGoogle Scholar
  31. Figueiral I, Mosbrugger V (2000) A review of charcoal analysis as a tool for assessing Quaternary and Tertiary environments: achievements and limits. Palaeogeogr Palaeoclimatol Palaeoecol 164:397–407.  https://doi.org/10.1016/S0031-0182(00)00195-4 CrossRefGoogle Scholar
  32. Figueroa-Rangel B, Olvera-Vargas M, Vázquez-López JM, Willis K, Lozano-García S (2016) Modern and fossil pollen assemblages revealing forest taxonomic changes in the Mexican subtropics during the last 1300 years. Rev Palaeobot Palynol 231:1–13.  https://doi.org/10.1016/j.revpalbo.2016.04.007 CrossRefGoogle Scholar
  33. Figueroa-Rangel B, Willis K, Olvera-Vargas M (2012) Late Holocene successional dynamics in a transitional forest of west-central Mexico. The Holocene 22:143–153.  https://doi.org/10.1177/0959683611414929 CrossRefGoogle Scholar
  34. Figueroa-Rangel BL, Willis KJ, Olvera-Vargas M (2008) 4200 years of pine-dominated upland forest dynamics in west-central Mexico: human or natural legacy? Ecology 89:1893–1907.  https://doi.org/10.1890/07-0830.1 CrossRefGoogle Scholar
  35. Figueroa-Rangel BL, Willis KJ, Olvera-Vargas M (2010) Cloud forest dynamics in the Mexican neotropics during the last 1300 years. Glob Chang Biol 16:1689–1704.  https://doi.org/10.1111/j.1365-2486.2009.02024.x CrossRefGoogle Scholar
  36. Figueroa-Rangel BL (2018) Mexican Reference Collection (Version 2). Digitised Palynological Reference Collection Global Pollen Project https://globalpollenproject.org/Reference/006fa89d-ee86-4b59-a249-a30572b67358/2
  37. Flessa KW, Jackson ST (2005) Forging a common agenda for ecology and paleoecology. BioScience 55:1030–1031. https://doi.org/10.1641/0006-3568(2005)055[1030:FACAFE]2.0.CO;2CrossRefGoogle Scholar
  38. Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S, Fernandes K, Liebmann B, Fisher R, Mynenig RB (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci 110:18110–18115.  https://doi.org/10.1073/pnas.1302584110 CrossRefGoogle Scholar
  39. Gavito ME, Olsson PA, Rouhier H, Medina-Peñafield A, Jacobsen I, Bago I, Azcón-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:188–197.  https://doi.org/10.1111/j.1469-8137.2005.01481.x CrossRefGoogle Scholar
  40. Haase P, Frenzel M, Klotz S, Musche M, Stoll S (2016) The long-term ecological research (LTER) network: relevance, current status, future perspective and examples from marine, freshwater and terrestrial long-term observation. Ecol Indic 65:1–3.  https://doi.org/10.1016/j.ecolind.2016.01.040 CrossRefGoogle Scholar
  41. Haase P, Tonkin JD, Stoll S, Burkhard B, Frenzel M, Geijzendorffer IR, Häuser C, Klotz S, Kühn I, McDowell WH, Mirtl M, Müller F, Musche M, Penner J, Zacharias S, Schmeller DS (2018) The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Total Environ 613–614:1376–1384.  https://doi.org/10.1016/j.scitotenv.2017.08.111 CrossRefGoogle Scholar
  42. Harning DJ, Geirsdottir A, Miller GH (2018) Punctuated Holocene climate of Vestfirðir, Iceland, linked to internal/external variables and oceanographic conditions. Quat Sci Rev 189:31–42.  https://doi.org/10.1016/j.quascirev.2018.04.009 CrossRefGoogle Scholar
  43. Heinlein AH, Moore MM, Fulé PZ, Covington WW (2005) Fire history and stand structure of two ponderosa pine-mixed conifer sites: San Francisco Peaks, Arizona, USA. Int J Wildland Fire 14:307–320.  https://doi.org/10.1071/WF04060 CrossRefGoogle Scholar
  44. Islebe GA, Domínguez Vázquez G, Espadas Manrique CC, Figueroa-Rangel BL, González Yajimovich O, Hernández Arana H, Lozano-García S, Martínez López A, Olvera-Vargas M, Orellana Lanza R, Pérez Cruz L, Ramírez Barajas P, Roy P, Torrescano Valle N (2016) Cambio climático: contexto histórico, paleoecológico y paleoclimático. Tendencias actuales y perspectivas. In: Balvanera P, Arias E, Rodríguez Estrella R, Almeida L, Schmitter Soto JJ (eds) Ecosistemas de México: una mirada a su conocimiento. Consejo Nacional de Ciencia y Tecnología y Universidad Nacional Autonoma de México, México, pp 25–55. ISBN: 978–607–02-8015-academia.edu/26419252/Cambio_climático_contexto_histórico_paleoecológico_y_paleoclimático._Tendencias_actuales_y_prespectivas
  45. Jackson D (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214.  https://doi.org/10.2307/1939574 CrossRefGoogle Scholar
  46. Jackson ST (2001) Integrating ecological dynamics across timescales, realtime, Q-time and deep time. Palaios 16:1–2.  https://doi.org/10.1669/0883-1351(2001)016<0001:IEDATR>2.0.CO;2 CrossRefGoogle Scholar
  47. Johnson DW, Todd DE (1983) Relationships among iron, aluminum, carbon, and asulfate in a variety of forest soils. Soil Sci Soc Am J 47:792–800.  https://doi.org/10.2136/sssaj1983.03615995004700040035x CrossRefGoogle Scholar
  48. Jolliffe IT (1972) Discarding variables in a principal component analysis. I: artificial data. Appl Stat 23:160–173.  https://doi.org/10.2307/2346488 CrossRefGoogle Scholar
  49. Jonsdottir IS, Khitun O, Stenstrom A (2005) Biomass and nutrient responses of a clonal tundra sedge to climate warming. Can J Bot 83:1608–1621.  https://doi.org/10.1139/b05-129 CrossRefGoogle Scholar
  50. Joo-Chang JC, Islebe G, Torrescano-Valle N (2015) Mangrove history during middle- and late-Holocene in Pacific South-Eastern Mexico. The Holocene 25:651–662.  https://doi.org/10.1177/0959683614566217 CrossRefGoogle Scholar
  51. Julie Markus J, McBratney AB (2001) A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environ Int 27:399–411.  https://doi.org/10.1016/S0160-4120(01)00049-6 CrossRefGoogle Scholar
  52. Kéfi S, Guttal V, Brock WA, Carpenter SR, Ellison AM, Livina VN, Seekell DA, Scheffer M, van Nes EH, Dakos V (2014) Early warning signals of ecological transitions: methods for spatial patterns. PLoS One 9:e92097.  https://doi.org/10.1371/journal.pone.0092097 CrossRefGoogle Scholar
  53. Kelly I (1945) The Archaeology of the Autlan-Tuxcacuesco area of Jalisco. I: The Autlan Zone Ibero-Americana 26:1–93. doi: https://doi.org/10.1086/395305 Google Scholar
  54. Kelly I (1980) Ceramic sequence in Colima: Capacha, an early phase vol 37. Anthropological Papers. University of Arizona Press, Tucson, Arizona. ISBN: 978–0–8165-0565-4; eISBN: 978-0-8165-3390-9Google Scholar
  55. Lachniet MS, Bernal JP, Asmerom Y, Polyak V, Piperno D (2013) A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change. Geology 40:259–262.  https://doi.org/10.1130/G32471 CrossRefGoogle Scholar
  56. Lentz DL (2000) Anthropocentric food webs in the Precolumbian Americas. In: Lentz DL (ed) Imperfect balance: landscape transformations in the Precolumbian Americas. Columbia University Press, New York. ISBN: 978-023-11-1157-7.  https://doi.org/10.7312/lent11156 CrossRefGoogle Scholar
  57. Lowe JJ, Walker MJC (1997) Reconstructing quaternary environments. Longman, London. ISBN: 978–058–21-0166-1 doi: https://doi.org/10.1002/(SICI)1096-9837(199805)23:5<476::AID-ESP866>3.0.CO;2-G CrossRefGoogle Scholar
  58. Lozano-García S, Sosa-Najera S, Sugiura Y, Caballero M (2005) 23,000 yr of vegetation history of the Upper Lerma, a tropical high-altitude basin in Central Mexico. Quat Res 64:70–82.  https://doi.org/10.1016/j.yqres.2005.02.010 CrossRefGoogle Scholar
  59. Lozano-García S, Vázquez-Selem L (2005) A high-elevation Holocene pollen record from Iztaccihuatl volcano, central Mexico. Holocene 15:329–338.  https://doi.org/10.1191/0959683605hl814rp CrossRefGoogle Scholar
  60. Lozano-García S, Caballero M, Ortega B, Rodríguez A, Sosa S (2007) Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica. PNAS 104:16200–16203.  https://doi.org/10.1073/pnas.0707896104 CrossRefGoogle Scholar
  61. Ludlow-Wiechers B, Almeida-Lenero L, Islebe G (2005) Paleoecological and climatic changes of the Upper Lerma Basin, Central Mexico during the Holocene. Quat Res 64:318–332.  https://doi.org/10.1016/j.yqres.2005.08.004 CrossRefGoogle Scholar
  62. Luna-Vega I, Magallón S (2010) Phylogenetic composition of angiosperm diversity in the cloud forest of Mexico. Biotropica 42:444–454.  https://doi.org/10.1111/j.1744-7429.2009.00606.x CrossRefGoogle Scholar
  63. Maher LJJ (1972) Absolute pollen diagram of Redrock Lake, Boulder County, Colorado. Quat Res 2:531–553.  https://doi.org/10.1016/0033-5894(72)90090-7 CrossRefGoogle Scholar
  64. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260.  https://doi.org/10.1126/science.1177303 CrossRefGoogle Scholar
  65. Martínez-Rivera LM, Sandoval-Legaspi JJ, Guevara RD (1991) El clima en la Reserva de la Biósfera Sierra de Manantlán (Jalisco-Colima, México) y en su área de influencia. Agrociencia Serie Agua-Suelo-Clima 2:107–119Google Scholar
  66. Metcalfe SE, Jones MD, Davies SJ, Noren A, MacKenzie A (2010) Climate variability over the last two millennia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, Mexico. The Holocene 20:1195–1206.  https://doi.org/10.1177/0959683610371994 CrossRefGoogle Scholar
  67. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 239–269 ISBN: 1-4020-0628-4Google Scholar
  68. Mollenhauer H, Kasner M, Haase P, Peterseil J, Wohner C, Frenzel M, Mirtl M, Schima R, Bumberger J, Zacharias S (2018) Long-term environmental monitoring infrastructures in Europe: observations, measurements, scales, and socio-ecological representativeness. Sci Total Environ 624:968–978CrossRefGoogle Scholar
  69. Moreno PI, Vilanova I, Villa-Martínez R, Garreaud RD, Rojas M, De Pol-Holz R (2014) Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia. Nat Commun 5375:1–7.  https://doi.org/10.1038/ncomms5375nature.com/articles/ncomms5375.pdf CrossRefGoogle Scholar
  70. Negreros-Castillo P, Snook LK, Mize CW (2003) Regenerating mahogany (Swietenia macrophylla) from seed in Quintana Roo, Mexico: the effects of sowing method and clearing treatment. For Ecol Manag 183:351–362.  https://doi.org/10.1016/S0378-1127(03)00143-9 CrossRefGoogle Scholar
  71. O’Hara SL, Street-Perrott FA, Burt TP (1993) Acecelerated soil erosion around a Mexican highland lake caused by preHispanic agriculture. Nature 362:48–51.  https://doi.org/10.1038/362048a0 CrossRefGoogle Scholar
  72. Ochoa-Gaona S (2001) Traditional land-use systems and patterns of forest fragmentation in the highlands of Chiapas, Mexico. Environ Manag 27:571–586.  https://doi.org/10.1007/s002670010171 CrossRefGoogle Scholar
  73. Olvera-Vargas M, Figueroa-Rangel BL, Vázquez-López JM (2010) Is there environmental differentiation in the Quercus-dominated forests of west-central Mexico? Plant Ecol 211:321–335.  https://doi.org/10.1007/s11258-010-9792-z CrossRefGoogle Scholar
  74. Olvera-Vargas M, Figueroa-Rangel BL, Cuevas-Guzmán R (2014) Environmental filters and patterns of tree regeneration in high altitude sub-tropical Quercus-dominated forests. Ecol Res 29:711–721.  https://doi.org/10.1007/s11284-014-1163-0 CrossRefGoogle Scholar
  75. Olvera-Vargas M, Figueroa-Rangel BL, Vázquez-López JM (2015) Tree mortality and recruitment in heterogeneous stands of sub-tropical mixed-oak forests in west-central México. Interciencia 40:233–240. http://www.redalyc.org/articulo.oa?id=33935906002
  76. Pascual U (2005) Land use intensification potential in slash-and-burn farming through improvements in technical efficiency. Ecol Econ 52:497–511.  https://doi.org/10.1016/j.ecolecon.2004.09.012 CrossRefGoogle Scholar
  77. Peñuelas J, Fillela I (2002) Metal pollution in Spanish terrestrial ecosystems during the twentieth century. Chemosphere 46:501–505.  https://doi.org/10.1016/S0045-6535(01)00171-0 CrossRefGoogle Scholar
  78. Perry JP, Graham A, Richardson DM (2000) The history of pines in Mexico and Central America. In: Richardson DM (ed) Ecology and biogeography of Pinus, First edn. Cambridge University Press, Cambridge, pp 137–149 ISBN:0-521-55176-5Google Scholar
  79. R Development Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  80. Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99.  https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x CrossRefGoogle Scholar
  81. Ramírez-Marcial N, González-Espinoza M, Williams-Linera G (2001) Anthropogenic disturbance and tree diversity in the montane rain forest in Chiapas, Mexico. For Ecol Manag 154:311–326.  https://doi.org/10.1016/S0378-1127(00)00639-3 CrossRefGoogle Scholar
  82. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormarc G, Manning S, Bronk Ramsey C, Remmele RWRS, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46:1029–1058.  https://doi.org/10.1017/S0033822200033002 CrossRefGoogle Scholar
  83. Retallack GJ (2001) Soils of the past: an introduction to paleopedology. Blackwell Science, Oxford. ISBN: 978-063-20-5376-6.  https://doi.org/10.1002/9780470698716 CrossRefGoogle Scholar
  84. Roberts N (2002) The Holocene. Blackwell, Oxford ISBN: 978-1-118-68756-7Google Scholar
  85. Rodríguez-Ramírez A, Caballero M, Roy P, Ortega B, Vázquez-Castro G, Lozano-García S (2015) Climatic variability and human impact during the last 2000 years in western Mesoamerica: evidence of late Classic (AD 600–900) and Little Ice Age drought events. Clim Past 11:1239–1248.  https://doi.org/10.5194/cp-11-1239-2015 CrossRefGoogle Scholar
  86. Rodríguez-Trejo DA, Fulé PZ (2003) Fire ecology of Mexican pines and a fire management proposal. Int J Wildland Fire 12:23–37.  https://doi.org/10.1071/WF02040 CrossRefGoogle Scholar
  87. Rossotti A, Ferrari L, López-Martinez M, Rosas-Elguera J (2002) Geology of the boundary between the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt in the Guadalajara region, western Mexico. Revista Mexicana de Ciencias Geológicas 19:1–15 http://www.redalyc.org/articulo.oasatori.geociencias.unam.mx/19-1/(1)Rossotti.pdf Google Scholar
  88. Rull V (2014) Ecological palaeoecology: a missing link between ecology and evolution. Collect Bot 33:65–73.  https://doi.org/10.3989/collectbot.2013.v33.005 CrossRefGoogle Scholar
  89. Rzedowskii J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica Mexicana 35:25–44.  https://doi.org/10.21829/abm35.1996.955 CrossRefGoogle Scholar
  90. Sardans J, Peñuelas J (2005) Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia. Chemosphere 60:1293–1307.  https://doi.org/10.1016/j.chemosphere.2005.01.059 CrossRefGoogle Scholar
  91. Sardans J, Peñuelas J, Estiarte M (2008) Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland. Chemosphere 70:874–885.  https://doi.org/10.1016/j.chemosphere.2007.06.085 CrossRefGoogle Scholar
  92. Sauer C (1990) Colima de la Nueva España en el siglo XVI. Universidad de Colima y Ayuntamiento de Colima https://es.scribd.com/document/21776641/Carl-Sauer-Colima-de-la-Nueva-Espana-en-el-siglo-XVI
  93. Shuman BN, Routson C, McKay M, Fritz S, Kaufman D, Kirby ME, Nolan C, Pederson GT, St-Jacques JM (2018) Placing the Common Era in a Holocene context: millennial to centennial patterns and trends in the hydroclimate of North America over the past 2000 years. Clim Past 14:665–686.  https://doi.org/10.5194/cp-14-665 CrossRefGoogle Scholar
  94. Sosa-Najera S (2013) El Holoceno Tardío en el occidente de México: El registro palinológico y geoquímico del lago crater Santa Maria del Oro, Nayarit. Doctoral thesis, Universidad Nacional Autonoma de México http://oreon.dgbiblio.unam.mx/F/?func=service&doc_library=TES01&doc_number=000694812&line_number=0001&func_code=WEB-BRIEF&service_type=MEDIA
  95. Sosa-Najera S, Lozano-Garcia S, Roy PD, Caballero M (2010) Registro de sequías históricas en el occidente de México con base en el análisis elemental de sedimentos lacustres: El caso del lago de Santa María del Oro. Bol Soc Geol Mex 62:437–451.  https://doi.org/10.18268/BSGM2010v62n3a8 CrossRefGoogle Scholar
  96. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179.  https://doi.org/10.2307/1938672 CrossRefGoogle Scholar
  97. ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer power, Itaca. www.canoco.com
  98. Thompson R, Oldfield F (1986) Environmental magnetism. Allen & Unwin, London. ISBN: 978-94-011-8038-2.  https://doi.org/10.1007/978-94-011-8036-8 CrossRefGoogle Scholar
  99. Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:2, 024019.  https://doi.org/10.1088/1748-9326/10/2/024019 CrossRefGoogle Scholar
  100. Torres-Rodríguez E, Lozano-García S, Figueroa-Rangel BL, Ortega-Guerrero B, Vázquez-Castro G (2012) Cambio ambiental y respuestas de la vegetación de los últimos 17,000 años en el centro de México: el registro del lago de Zirahuén. Revista Mexicana de Ciencias Geologicas 29:764–778 http://satori.geociencias.unam.mx/ Google Scholar
  101. Torres-Rodríguez E, Lozano-García S, Roy PD, Ortega-Guerrero B, Beramendi-Orozco L, Correa-Metrio A, Caballero M (2015) Last Glacial droughts and fire regimes in the central Mexican highlands. J Quat Sci 30:88–99.  https://doi.org/10.1002/jqs.2761 CrossRefGoogle Scholar
  102. Torrescano Valle N, Islebe G (2015) Holocene paleoecology, climate history and human influence in the southwestern Yucatan Peninsula. Rev Palaeobot Palynol 217:1–8.  https://doi.org/10.1016/j.revpalbo.2015.03.003 CrossRefGoogle Scholar
  103. Vázquez-Garcia JA, Cuevas-Guzmán R, Cochrane TS, Iltis HH, Santana-Michel FJ, Guzmán-Hernández L (1995) Flora de Manantlán. SIDA-Botanical Miscellany N.13. ISBN: 0833–1475Google Scholar
  104. Williams M (2003) Deforesting the earth: from prehistory to global crisis. The University of Chicago Press, Chicago ISBN: 978-02-268-9947-3 http://www.conservationandsociety.org/temp/ConservatSoc63274-4437664_121936.pdf Google Scholar
  105. Willis K, MacDonald GM (2011) Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu Rev Ecol Evol Syst 42:67–87.  https://doi.org/10.1146/annurev-ecolsys-102209-144704 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ecología y Recursos NaturalesCentro Universitario de la Costa Sur, Universidad de GuadalajaraAutlán de NavarroMexico

Personalised recommendations