Advertisement

Regional Environmental Change

, Volume 19, Issue 2, pp 415–428 | Cite as

The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests

  • Alejandra Morán-OrdóñezEmail author
  • José V. Roces-Díaz
  • Kaori Otsu
  • Aitor Ameztegui
  • Lluís Coll
  • François Lefevre
  • Javier Retana
  • Lluís Brotons
Review

Abstract

Science and society are increasingly interested in predicting the effects of global change and socio-economic development on natural systems, to ensure maintenance of both ecosystems and human well-being. The Intergovernmental Platform on Biodiversity and Ecosystem Services has identified the combination of ecological modelling and scenario forecasting as key to improving our understanding of those effects, by evaluating the relationships and feedbacks between direct and indirect drivers of change, biodiversity, and ecosystem services. Using as case study the forests of the Mediterranean basin (complex socio-ecological systems of high social and conservation value), we reviewed the literature to assess (1) what are the modelling approaches most commonly used to predict the condition and trends of biodiversity and ecosystem services under future scenarios of global change, (2) what are the drivers of change considered in future scenarios and at what scales, and (3) what are the nature and ecosystem service indicators most commonly evaluated. Our review shows that forecasting studies make relatively little use of modelling approaches accounting for actual ecological processes and feedbacks between different socio-ecological sectors; predictions are generally made on the basis of a single (mainly climate) or a few drivers of change. In general, there is a bias in the set of nature and ecosystem service indicators assessed. In particular, cultural services and human well-being are greatly underrepresented in the literature. We argue that these shortfalls hamper our capacity to make the best use of predictive tools to inform decision-making in the context of global change.

Keywords

Ecological forecasting Future scenarios Global change Impact assessment evaluations IPBES Nature benefits to people Socio-ecological systems 

Notes

Acknowledgements

This work was supported by the Spanish Government through the INMODES project (grant number CGL2017-89999-C2-2-R), the ERA-NET FORESTERRA project INFORMED (grant number 29183), and the project Boscos Sans per a una Societat Saludable funded by Obra Social la Caixa (https://obrasociallacaixa.org/). AMO and AA were supported by Spanish Government through the “Juan de la Cierva” fellowship program (IJCI-2016-30349 and IJCI-2016-30049, respectively). JVRD was supported by the Government of Asturias and the FP7-Marie Curie-COFUND program of the European Commission (Grant “Clarín” ACA17-02).

Supplementary material

10113_2018_1408_MOESM1_ESM.docx (157 kb)
ESM 1 (DOCX 156 kb)

References

  1. Alcamo J, Ribeiro T (2001) Scenarios as tools for international environmental assessments. Experts’ corner report Prospects and Scenario No. 5. European Environmental Agency. In: Eur. Environ. Agency. https://www.eea.europa.eu/publications/environmental_issue_report_2001_24
  2. Bagstad KJ, Johnson GW, Voigt B, Villa F (2013) Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services. Ecosyst Serv 4:117–125.  https://doi.org/10.1016/j.ecoser.2012.07.012 CrossRefGoogle Scholar
  3. Bai X, van der Leeuw S, O’Brien K, Berkhout F, Biermann F, Brondizio ES, Cudennec C, Dearing J, Duraiappah A, Glaser M, Revkin A, Steffen W, Syvitski J (2016) Plausible and desirable futures in the Anthropocene: a new research agenda. Glob Environ Chang 39:351–362.  https://doi.org/10.1016/j.gloenvcha.2015.09.017 CrossRefGoogle Scholar
  4. Battisti A, Netherer S, Robinet C, Roques A (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15:2084–2096.  https://doi.org/10.1890/04-1903 CrossRefGoogle Scholar
  5. Battisti A, Larsson S, Roques A (2017) Processionary moths and associated urtication risk: global change-driven effects. Annu Rev Entomol 62:323–342.  https://doi.org/10.1146/annurev-ento-031616-034918 CrossRefGoogle Scholar
  6. Boerema A, Rebelo AJ, Bodi MB, Esler KJ, Meire P (2016) Are ecosystem services adequately quantified? J Appl Ecol 54:358–370.  https://doi.org/10.1111/1365-2664.12696 CrossRefGoogle Scholar
  7. Bottalico F, Pesola L, Vizzarri M, Antonello L, Barbati A, Chirici G, Corona P, Cullotta S, Garfì V, Giannico V, Lafortezza R, Lombardi F, Marchetti M, Nocentini S, Riccioli F, Travaglini D, Sallustio L (2016) Modeling the influence of alternative forest management scenarios on wood production and carbon storage: a case study in the Mediterranean region. Environ Res 144:72–87.  https://doi.org/10.1016/j.envres.2015.10.025 CrossRefGoogle Scholar
  8. Böttcher H, Verkerk PJ, Gusti M, Havlík P, Grassi G (2012) Projection of the future EU forest CO2 sink as affected by recent bioenergy policies using two advanced forest management models. GCB Bioenergy 4:773–783.  https://doi.org/10.1111/j.1757-1707.2011.01152.x CrossRefGoogle Scholar
  9. Brooks TM, Butchart SHM, Cox NA, Heath M, Craig H-T, Hoffmann M, Kingston N, Rodríguez JP, Stuart SN, Smart J (2015) Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals. Biodiversity 16:157–174.  https://doi.org/10.1080/14888386.2015.1075903 CrossRefGoogle Scholar
  10. Brotons L (2014) Species distribution models and impact factor growth in environmental journals: methodological fashion or the attraction of global change science. PLoS One 9:e111996.  https://doi.org/10.1371/journal.pone.0111996 CrossRefGoogle Scholar
  11. Brotons L, Aquilué N, De Cáceres M, Fortin MJ, Fall A (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS One 8:e62392.  https://doi.org/10.1371/journal.pone.0062392 CrossRefGoogle Scholar
  12. Burkhard B, Kroll F, Nedkov S, Müller F (2012) Mapping ecosystem service supply, demand and budgets. Ecol Indic 21:17–29.  https://doi.org/10.1016/j.ecolind.2011.06.019 CrossRefGoogle Scholar
  13. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings S, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig A, Daily GD, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Shahid N (2012) Biodiversity loss and its impact on humanity. Nature 489:326–326.  https://doi.org/10.1038/nature11148 CrossRefGoogle Scholar
  14. Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke R Jr, Pizer W, Pringle C, Reid WV, Rose KA, Sala O, Schlesiger WH, Wall DH, Wear D (2001) Ecological forecasts: an emerging imperative. Science 293:657–660.  https://doi.org/10.1126/science.293.5530.657 CrossRefGoogle Scholar
  15. Convention on Biological Diversity (2014) Global biodiversity outlook 4. https://www.cbd.int/gbo/gbo4/publication/gbo4-en-hr.pdf
  16. Convention on Biological Diversity (2015) Report of the ad hoc technical expert group on indicators for the strategic plan for biodiversity 2011–2020. https://www.cbd.int/doc/meetings/ind/id-ahteg-2015-01/official/id-ahteg-2015-01-03-en.pdf
  17. Cuddington K, Fortin M-J, Gerber LR, Hastings A, Liebhold A, O’Connor M, Ray C (2013) Process-based models are required to manage ecological systems in a changing world. Ecosphere 4:1–12.  https://doi.org/10.1890/ES12-00178.1
  18. Díaz S, Demissew S, Carabias J, Joly C, Lonsdale M, Ash N, Larigauderie A, Adhikari JR, Arico S, Báldi A, Bartuska A, Baste IA, Bilgin A, Brondizio E, Chan KMA, Figueroa VE, Duraiappah A, Fischer M, Hill R, Koetz T, Leadley P, Lyver P, Mace GM, Martin-Lopez B, Okumura M, Pacheco D, Pascual U, Pérez ES, Reyers B, Roth E, Saito O, Scholes RJ, Sharma N, Tallis H, Thaman R, Watson R, Yahara T, Hamid ZA, Akosim C, Al-Hafedh Y, Allahverdiyev R, Amankwah E, Asah ST, Asfaw Z, Bartus G, Brooks LA, Caillaux J, Dalle G, Darnaedi D, Driver A, Erpu G, Escobar-Eyzaguirre P, Failler P, Fouda AMM, Fu B, Gundimeda H, Hashimoto S, Homer F, Lavorel S, Lichtenstein G, Mala WA, Mandivenyi W, Matczak P, Mbizvo C, Mehrdadi M, Metzger JP, Mikissa JB, Moller H, Mooney HA, Mumby P, Nagendra H, Nesshover C, Oteng-Yeboah AA, Pataki G, Roué M, Rubis J, Schultz M, Smith P, Sumaila R, Takeuchi K, Thomas S, Verma M, Yeo-Chang Y, Zlatanova D (2015) The IPBES conceptual framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16.  https://doi.org/10.1016/j.cosust.2014.11.002 CrossRefGoogle Scholar
  19. Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Chang 114:813–822.  https://doi.org/10.1007/s10584-012-0570-x CrossRefGoogle Scholar
  20. Doblas-Miranda E, Martínez-Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Curiel Yuste J, Díaz M, Ferrandis P, García-Hurtado E, Iriondo JM, Keenan TF, Latron J, Llusià J, Loepfe L, Mayol M, Moré G, Moya D, Peñuelas J, Pons X, Poyatos R, Sardand J, Sus O, Vallejo VR, Vayreda J, Retana J (2015) Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24:25–43.  https://doi.org/10.1111/geb.12224 CrossRefGoogle Scholar
  21. EEA (2005) Vulnerability and adaptation to climate change in Europe. Technical Report No. 7. In: Eur. Environ. Agency. https://www.eea.europa.eu/publications/technical_report_2005_1207_144937
  22. Egoh B, Drakou EG, Maes J, Willemen L (2012) Indicators for mapping ecosystem services: a review. In: JRC Sci. Policy Reports. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/indicators-mapping-ecosystem-services-review
  23. FAO, Plan Bleu (2013) State of Mediterranean forests 2013. http://www.fao.org/docrep/017/i3226e/i3226e.pdf
  24. Fernandes PM, Barros AMG, Pinto A, Santos JA (2016) Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. J Geophys Res Biogeosci 121:2141–2157.  https://doi.org/10.1002/2016JG003389 CrossRefGoogle Scholar
  25. Founda D, Giannakopoulos C (2009) The exceptionally hot summer of 2007 in Athens, Greece—a typical summer in the future climate? Glob Planet Chang 67:227–236.  https://doi.org/10.1016/j.gloplacha.2009.03.013 CrossRefGoogle Scholar
  26. FRB (2013) Scénarios de la biodiversité: un état des lieux des publications scientifiques françaises. http://www.fondationbiodiversite.fr/images/documents/Rapports_Etudes/ScenariosEtatLieux.pdf
  27. García-Ruiz JM (2010) The effects of land uses on soil erosion in Spain: a review. Catena 81:1–11.  https://doi.org/10.1016/j.catena.2010.01.001 CrossRefGoogle Scholar
  28. Gauquelin T, Michon G, Joffre R, Duponnois R, Génin D, Fady B, Dagher-Kharrat MB, Derrigj A, Slimani S, Badri W, Alidriqui M, Auclair L, Simenel R, Aderghal M, Baudoin E, Galiana A, Prin Y, Sanguin H, Fernandez C, Baldy V (2018) Mediterranean forests, land use and climate change: a social-ecological perspective. Reg Environ Chang 18:623–636.  https://doi.org/10.1007/s10113-016-0994-3 CrossRefGoogle Scholar
  29. Geijzendorffer IR, Cohen-Shacham E, Cord AF, Cramer W, Guerra C, Martín-López B (2017) Ecosystem services in global sustainability policies. Environ Sci Pol 74:40–48.  https://doi.org/10.1016/j.envsci.2017.04.017 CrossRefGoogle Scholar
  30. Gil-Tena A, Aquilué N, Duane A, De Cáceres M, Brotons L (2016) Mediterranean fire regime effects on pine-oak forest landscape mosaics under global change in NE Spain. Eur J For Res 135:403–416.  https://doi.org/10.1007/s10342-016-0943-1 CrossRefGoogle Scholar
  31. Górriz-Mifsud E, Varela E, Piqué M, Prokofieva I (2016) Demand and supply of ecosystem services in a Mediterranean forest: computing payment boundaries. Ecosyst Serv 17:53–63.  https://doi.org/10.1016/j.ecoser.2015.11.006 CrossRefGoogle Scholar
  32. Harfoot M, Tittensor DP, Newbold T, McInerny G, Smith MJ, Schalemann JPW (2014) Integrated assessment models for ecologists: the present and the future. Glob Ecol Biogeogr 23:124–143.  https://doi.org/10.1111/geb.12100 CrossRefGoogle Scholar
  33. Harrison PA, Dunford RW, Holman IP, Rounsevell MDA (2016) Climate change impact modelling needs to include cross-sectoral interactions. Nat Clim Chang 6:885–890.  https://doi.org/10.1038/nclimate3039 CrossRefGoogle Scholar
  34. Hauck J, Winkler KJ, Priess JA (2015) Reviewing drivers of ecosystem change as input for environmental and ecosystem services modelling. Sustain Water Qual Ecol 5:9–30.  https://doi.org/10.1016/j.swaqe.2015.01.003 CrossRefGoogle Scholar
  35. IPBES (2016) Scenarios and models of biodiversity and ecosystem services. https://www.ipbes.net/assessment-reports/scenarios
  36. IPBES (2018a) Regional assessment report on biodiversity and ecosystem services for Europe and Central Asia. IPBES/6/INF/6/Rev.1. https://www.ipbes.net/assessment-reports/eca
  37. IPBES (2018b) Regional assessment report on biodiversity and ecosystem services for Africa. IPBES/6/INF/3/Rev.1. https://www.ipbes.net/assessment-reports/africa
  38. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New YorkGoogle Scholar
  39. Kelly RA, Jakeman AJ, Barreteau O, Brosuk ME, Sondoss E, Hamilton SH, Henriksen HJ, kuikka S, Maier HR, Rizzoli AE, van Delden H, Voinov AA (2013) Selecting among five common modelling approaches for integrated environmental assessment and management. Environ Model Softw 47:159–181.  https://doi.org/10.1016/j.envsoft.2013.05.005 CrossRefGoogle Scholar
  40. Kok K, Bärlund I, Flörke M, Holman I, Gramberger M, Sendzimir J, Stuch B, Zellmer K (2015) European participatory scenario development: strengthening the link between stories and models. Clim Chang 128:187–200.  https://doi.org/10.1007/s10584-014-1143-y CrossRefGoogle Scholar
  41. Kok MTJ, Kok K, Peterson GD, Hill R, Agard J, Carpenter SR (2017) Biodiversity and ecosystem services require IPBES to take novel approach to scenarios. Sustain Sci 12:177–181.  https://doi.org/10.1007/s11625-016-0354-8 CrossRefGoogle Scholar
  42. Koniak G, Noy-Meir I, Perevolotsky A (2011) Modelling dynamics of ecosystem services basket in Mediterranean landscapes: a tool for rational management. Landsc Ecol 26:109–124.  https://doi.org/10.1007/s10980-010-9540-8 CrossRefGoogle Scholar
  43. Korzukhin MD, Ter-Mikaelian MT, Wagner RG (1996) Process versus empirical models: which approach for forest management? Can J For Res 26:879–887.  https://doi.org/10.1139/x26-096 CrossRefGoogle Scholar
  44. Kraxner F, Nordström EM, Havlík P, Gusti M, Mosnier A, Frank S, Valin H, Fritz S, Fuss S, Kindermann G, McCallum I, Khabarov N, Böttcher H, See L, Aoki K, Schmid E, Máthé L, Oberstiner M (2013) Global bioenergy scenarios—future forest development, land-use implications, and trade-offs. Biomass Bioenergy 57:86–96.  https://doi.org/10.1016/j.biombioe.2013.02.003 CrossRefGoogle Scholar
  45. Lavorel S, Bayer A, Bondeau A, Lautenbach S, Ruiz-Frau A, Schulp N, Seppelt R, Verburg P, van Teeffelen A, Vannier C, Arneth A, Cramer W, Marba N (2017) Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecol Indic 74:241–260.  https://doi.org/10.1016/j.ecolind.2016.11.015 CrossRefGoogle Scholar
  46. Mahmoud M, Liu Y, Hartmann H, Stewart S, Wagener T, Semmens D, Stewart R, Gupta H, Dominguez D, Dominguez F, Hulse D, Letcher R, Rashleigh B, Smith C, Street R, Ticehurst J, Twery M, van Delden H, Waldick R, White D, Winter L (2009) A formal framework for scenario development in support of environmental decision-making. Environ Model Softw 24:798–808.  https://doi.org/10.1016/j.envsoft.2008.11.010 CrossRefGoogle Scholar
  47. Malek Ž, Verburg P (2017) Mediterranean land systems: representing diversity and intensity of complex land systems in a dynamic region. Landsc Urban Plan 165:102–116.  https://doi.org/10.1016/j.landurbplan.2017.05.012 CrossRefGoogle Scholar
  48. Malek Ž, Verburg PH, Geijzendor IR, Bondeau A, Cramer W (2018) Global change effects on land management in the Mediterranean region. Glob Environ Chang 50:238–254.  https://doi.org/10.1016/j.gloenvcha.2018.04.007 CrossRefGoogle Scholar
  49. Martinez-Harms MJ, Bryan BA, Balvanera P, Law EA, Rhodes JR, Possingham HP, Wilson KA (2015) Making decisions for managing ecosystem services. Biol Conserv 184:229–238.  https://doi.org/10.1016/j.biocon.2015.01.024 CrossRefGoogle Scholar
  50. Martínez-Vilalta J, Lloret F (2016) Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Glob Planet Chang 144:94–108.  https://doi.org/10.1016/j.gloplacha.2016.07.009 CrossRefGoogle Scholar
  51. McCarthy JJ, Canziani OF, Leary N, Dokken DJ, White KS (2011) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  52. MEA (2005) Ecosystems and human well-being: synthesis. https://www.millenniumassessment.org/documents/document.356.aspx.pdf
  53. Morán-Ordóñez A, Briscoe NJ, Wintle BA (2018) Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals. Ecography (Cop) 41:308–320.  https://doi.org/10.1111/ecog.02850 CrossRefGoogle Scholar
  54. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl G, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wibanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  55. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  56. Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl RA, Rogner H-H, Victor N (2000) Special report on emission scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. https://ipcc.ch/pdf/special-reports/spm/sres-en.pdf
  57. Nocentini S, Coll L (2013) Mediterranean forests: human use and complex adaptive systems. In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems. Building resilience to the challenge of global change, The Earthscan Forest Library (series). Routledge, New YorkGoogle Scholar
  58. O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijven BJ, van Vuuren DP, Birkmann J, Kok K, Levy M, Solecki W (2015) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Chang 42:169–180.  https://doi.org/10.1016/j.gloenvcha.2015.01.004 CrossRefGoogle Scholar
  59. Pacheco FAL, Santos RMB, Sanches Fernandes LF, Pereira MG, Cortes RM (2015) Controls and forecasts of nitrate yields in forested watersheds: a view over mainland Portugal. Sci Total Environ 537:421–440.  https://doi.org/10.1016/j.scitotenv.2015.07.127 CrossRefGoogle Scholar
  60. Palahi M, Mavsar R, Gracia C, Birot Y (2008) Mediterranean forests under focus. Int For Rev 10:676–688.  https://doi.org/10.1505/ifor.10.4.676 Google Scholar
  61. Pardos M, Calama R, Maroschek M, Rammer W, Lexer MJ (2015) A model-based analysis of climate change vulnerability of Pinus pinea stands under multiobjective management in the Northern Plateau of Spain. Ann For Sci 72:1009–1021.  https://doi.org/10.1007/s13595-015-0520-7 CrossRefGoogle Scholar
  62. Pausas JG (2006) Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecol 187:249–259.  https://doi.org/10.1007/s11258-006-9138-z CrossRefGoogle Scholar
  63. Pausas JG, Lloret F (2007) Spatial and temporal patterns of plant functional types under simulated fire regimes. Int J Wildland Fire 16:484–492.  https://doi.org/10.1071/WF06109 CrossRefGoogle Scholar
  64. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake RC, Chen i-C, Clark TC, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJ, Strugnell JM, Sunday JM, Tuanmu M-N, verges A, Villanueva C, Wernberg T, Wapstra E, Willians SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214.  https://doi.org/10.1126/science.aai9214 CrossRefGoogle Scholar
  65. Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J, Bartrons M, Rivas-Ubach A, Grau O, Pequero G, Margalef O, Pla-Rabés S, Stefanescu C, Asensio D, Preece C, Lui L, Verger A, Barbeta A, Achotegui-Castells A, Gargallo-Garriga A, Sperlich D, Farré-Armengol G, Fernández-Martínex M, Liu D, Zhang C, Urbina I, Camino-Serrano M, Vives-Ingla M, Stocker BD, Balzarolo M, Guerrierei R, Paucelle M, Marañón-Jiménez S, Bórnez-Mejías K, Zhaobin M, Descals A, Castellanos A, Terradas J (2017) Impacts of global change on Mediterranean forests and their services. Forests 8:1–37.  https://doi.org/10.3390/f8120463 CrossRefGoogle Scholar
  66. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dullo E, Faith DP, Freyhof J, Gregory RD, Heop C, Höft R, Hurtt G, Jetz W, Karp DS, Ma MG, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Warpole M, Wegmann M (2013) Essential biodiversity variables. Science (80-) 339:277–278.  https://doi.org/10.1126/science.1229931 CrossRefGoogle Scholar
  67. Peterson GD, Cumming GS, Carpenter SR (2003) Scenario planning: a tool for conservation in an uncertain world. Conserv Biol 17:358–366.  https://doi.org/10.1046/j.1523-1739.2003.01491.x CrossRefGoogle Scholar
  68. Resco De Dios V, Fischer C, Colinas C (2007) Climate change effects on mediterranean forests and preventive measures. New For 33:29–40.  https://doi.org/10.1007/s11056-006-9011-x CrossRefGoogle Scholar
  69. Ricketts TH, Watson KB, Koh I, Ellis AM, Nicholson CC, Posner S, Richardson LL, Sonter LJ (2016) Disaggregating the evidence linking biodiversity and ecosystem services. Nat Commun 7:13106.  https://doi.org/10.1038/ncomms13106 CrossRefGoogle Scholar
  70. Rieb JT, Chaplin-Kramer R, Daily GC, Armsworth PR, Böhning-Gaese K, Bonn A, Cumming GS, Eigenbrod F, Grimm V, Jackson BM, Marques A, Pattanayak SK, Pereira HM, Peterson GD, Ricketts TH, Robinson BE, Schröter M, Schulte LA, Seppelt R, Turner MG, Bennett EM (2017) When, where, and how nature matters for ecosystem services: challenges for the next generation of ecosystem service models. Bioscience 67:820–833.  https://doi.org/10.1093/biosci/bix075 CrossRefGoogle Scholar
  71. Rosa IM, Pereira HM, Ferrier S, Alkemade R, La A, Akcakaya HR, den Belder E, Fazel AM, Fujimori S, Harfoot M, Harhash KA, Harrison PA, Hauck J, Hendriks RJJ, Hernández G, Jetz W, Karlsson-Vinkhuyzen SI, Kim H, King N, Kok MTJ, Kolomytsev GO, Lazarova T, Leadley O, Lundquist CJ, García Márquez J, Meyer C, Navarro LM, Nesshöver C, Ngo HT, Ninan KN, Palomo MG, Pereira LM, Peterson GD, Pichs R, Popp A, Purvis A, Ravera F, Rondinini C, Sathyapalan J, Schipper AM, Seppelt R, Settele J, Sitas N, van Vuuren D (2017) Multiscale scenarios for nature futures. Nat Ecol Evol 1:1416–1419.  https://doi.org/10.1038/s41559-017-0273-9 CrossRefGoogle Scholar
  72. Ruffault J, Curt T, StPaul NM, Moron V, Trigo RM (2018) Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat Hazards Earth Syst Sci 18:847–856.  https://doi.org/10.5194/nhess-18-847-2018 CrossRefGoogle Scholar
  73. Seidl R, Fernandes PM, Fonseca TF, Guillet F, Jönsson AM, Marganicova K, Netherer S, Arpaci A, Bontemps JD, Bugmann H, González-Olabarría JR, Lasch P, Meredieu C, Moreira F, Schelhaas M-J, Mohren F (2011) Modelling natural disturbances in forest ecosystems: a review. Ecol Model 222:903–924.  https://doi.org/10.1016/j.ecolmodel.2010.09.040 CrossRefGoogle Scholar
  74. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4:806–810.  https://doi.org/10.1038/nclimate2318 CrossRefGoogle Scholar
  75. Sirami C, Caplat P, Popy S, Clamens A, Arlettaz R, Jiguet F, Brotons L, Martin J-L (2017) Impacts of global change on species distributions: obstacles and solutions to integrate climate and land use. Glob Ecol Biogeogr 26:385–394.  https://doi.org/10.1111/geb.12555 CrossRefGoogle Scholar
  76. Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Bochung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013—the physical science basis. In: Intergovernmental Panel on Climate Change. http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SummaryVolume_FINAL.pdf
  77. Talluto MV, Boulangeat I, Ameztegui A, Aubin I, Berteaux D, Butler A, Doyon F, Drever CR, Fortin M-J, Franceschini T, Liénard J, McKenney D, Solarik KA, Strigul N, Thuiller W, Gravel D (2016) Cross-scale integration of knowledge for predicting species ranges: a metamodelling framework. Glob Ecol Biogeogr 25:238–249.  https://doi.org/10.1111/geb.12395 CrossRefGoogle Scholar
  78. Titeux N, Henle K, Mihoub J-B, Ir G, Cramer W, Verburg PH, Brotons L (2016) Biodiversity scenarios neglect future land use change. Glob Chang Biol:1–11.  https://doi.org/10.1111/gcb.13272
  79. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  80. Vihervaara P, Rönkä M, Walls M (2010) Trends in ecosystem service research: early steps and current drivers. Ambio 39:314–324.  https://doi.org/10.1007/s13280-010-0048-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre de Ciència i Tecnologia Forestal de Catalunya (CTFC)SolsonaSpain
  2. 2.Centre for Research on Ecology and Forestry Applications (CREAF)Cerdanyola del VallesSpain
  3. 3.InForest Joint Research Unit (CTFC-CREAF)SolsonaSpain
  4. 4.Department of GeographySwansea UniversitySwanseaUK
  5. 5.Department of Agriculture and Forest Engineering (EAGROF)University of LleidaLleidaSpain
  6. 6.INRA, URFM, Ecologie des Forêts Méditerranéennes, Domaine Saint Paul, AgroParcAvignonFrance
  7. 7.Spanish National Research Council (CSIC)Cerdanyola del VallesSpain

Personalised recommendations