Regional Environmental Change

, Volume 19, Issue 1, pp 251–266 | Cite as

Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models

  • Antti TakolanderEmail author
  • Thomas Hickler
  • Laura Meller
  • Mar Cabeza
Original Article


Many tree species are predicted to shift their geographic ranges with changing climate, but the extents, timing, and magnitude of these shifts remain uncertain. Comparing various modeling strategies is crucial for reducing uncertainty related to these responses and for guiding the interpretation of model results. Here, we compared outputs of a dynamic vegetation model (DVM) and an ensemble of statistical bioclimatic envelope models (BEMs) in predicting range shifts of 14 representative tree species in continental Europe. Expanding the number of species and geographic extent compared to previous model comparisons, we found that the DVM produced more conservative range shift estimates, even in long-term equilibrium simulations. The differences in range shift projections were greatest for Mediterranean species, whose expansion northwards was inhibited in the DVM by more competitive prevailing temperate species. In contrast to our expectation, competitive traits of the species studied did not consistently affect the differences. The agreement between BEM and DVM results was highest in boreal species, suggesting that BEMs are an efficient method for modeling species under strong control of abiotic factors. BEMs produced substantially larger range contractions at the southern edge of distribution, in contrary to the DVM, where contractions were more modest. Despite these differences, both approaches also yielded consistent northwards shifts of forest types, which may have substantial negative impacts on forest economy, and alter species composition in natural forest stands.


Bioclimatic envelope model Species distribution model Dynamic vegetation model Climate change Range shifts Forests 



We thank the two anonymous reviewers for their constructive comments on the manuscript, and the AFE secretariat for providing species distribution data. AT was funded by the LUOVA Doctoral Programme in Wildlife Biology Research, University of Helsinki. TH acknowledges support from the research funding program “LOEWE-Landesoffensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education. MC was funded by Academy of Finland grant no 257686. The authors have no conflict of interest to declare.

Supplementary material

10113_2018_1403_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1460 kb)


  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. CrossRefGoogle Scholar
  2. Altman J, Fibich P, Santruckova H, Dolezal J, Stepanek P, Kopacek J, Hunova I, Oulehle F, Tumajer J, Cienciala E (2017) Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Sci Total Environ 609:506–516. CrossRefGoogle Scholar
  3. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. CrossRefGoogle Scholar
  4. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. CrossRefGoogle Scholar
  5. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538. CrossRefGoogle Scholar
  6. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 365–377:365–377. CrossRefGoogle Scholar
  7. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178. CrossRefGoogle Scholar
  8. Benito Garzón M, Alía R, Robson TM, Zavala M a (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20:766–778. CrossRefGoogle Scholar
  9. Bohn U, Neuhäusle R, Gollub G, Hettwer C, Neuhäuslova Z, Raus T, Sclüter H, Weber H, 2000. Karte der natürlichen Vegetation Europas / Map of the natural vegetation of Europe. Maßstab / Scale 1:2,500,000. BfN-Schriftenvertrieb im Landwirtschaftsverlag, MünsterGoogle Scholar
  10. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16:1145–1157. CrossRefGoogle Scholar
  11. Cheaib A, Badeau V, Boe J, Chuine I, Delire C, Dufrêne E, François C, Gritti ES, Legay M, Pagé C, Thuiller W, Viovy N, Leadley P (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15:533–544. CrossRefGoogle Scholar
  12. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. CrossRefGoogle Scholar
  13. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251. CrossRefGoogle Scholar
  14. Connolly SR, Keith SA, Colwell RK, Rahbek C (2017) Process, mechanism, and modeling in macroecology. Trends Ecol Evol 32:835–844. CrossRefGoogle Scholar
  15. Czúcz B, Gálhidy L, Mátyás C (2011) Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann For Sci 68:99–108. CrossRefGoogle Scholar
  16. Dawes MA, Hättenschwiler S, Bebi P, Hagedorn F, Handa IT, Körner C, Rixen C (2010) Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J Ecol 99:383–394. Google Scholar
  17. Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M, Lindström Å, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Chang 2:121–124. CrossRefGoogle Scholar
  18. Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C, Hartig F, Kearney M, Morin X, Römermann C, Schröder B, Singer A (2012) Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr 39:2119–2131. CrossRefGoogle Scholar
  19. Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Chang Biol 24:1150–1163. CrossRefGoogle Scholar
  20. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. CrossRefGoogle Scholar
  21. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486.[0479:LOFSCF]2.0.CO;2Google Scholar
  22. Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601. CrossRefGoogle Scholar
  23. Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography (Cop.). 32:34–45. CrossRefGoogle Scholar
  24. França S, Cabral HN (2015) Predicting fish species richness in estuaries: which modelling technique to use? Environ Model Softw 66:17–26. CrossRefGoogle Scholar
  25. Fronzek S, Carter TR, Jylhä K (2012) Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Glob Ecol Biogeogr 21:19–35. CrossRefGoogle Scholar
  26. García-López JM, Allué C (2011) Modelling phytoclimatic versatility as a large scale indicator of adaptive capacity to climate change in forest ecosystems. Ecol Model 222:1436–1447. CrossRefGoogle Scholar
  27. Giorgi F, Coppola E (2009) Projections of twenty-first century climate over Europe. Eur Phys J Conf 1:29–46. CrossRefGoogle Scholar
  28. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. CrossRefGoogle Scholar
  29. Gritti ES, Gaucherel C, Crespo-Perez M-V, Chuine I (2013) How can model comparison help improving species distribution models? PLoS One 8:e68823. CrossRefGoogle Scholar
  30. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. CrossRefGoogle Scholar
  31. Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207. CrossRefGoogle Scholar
  32. Heikkinen RK, Marmion M, Luoto M (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography (Cop.). 35:276–288. CrossRefGoogle Scholar
  33. Hickler T, Fronzek S, Araújo MB, Schweiger O, Thuiller W, Sykes MT (2009) An ecosystem model-based estimate of changes in water availability differs from water proxies that are commonly used in species distribution models. Glob Ecol Biogeogr 18(3):304–313Google Scholar
  34. Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004) Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85:519–530. CrossRefGoogle Scholar
  35. Hickler T, Vohland K, Feehan J, Miller P a, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kühn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21:50–63. CrossRefGoogle Scholar
  36. Hickler T, Rammig A, Werner C (2015) Modelling CO2 impacts on forest productivity. Curr For Rep 1:69–80. Google Scholar
  37. Hobbins MT, Ramffez JA, Brown C (2001) The complementary relationship in estimation of regional evapotranspiration: an enhanced advection-aridity model. Water Resour Res 37:1389–1403. CrossRefGoogle Scholar
  38. Huntley B, Berry PM, Cramer W, McDonald AP (1995) Special paper: modelling present and potential future ranges of some European higher plants using climate response surfaces. J Biogeogr 22:967. CrossRefGoogle Scholar
  39. Iverson LR, Thompson FR, Matthews S, Peters M, Prasad A, Dijak WD, Fraser J, Wang WJ, Hanberry B, He H, Janowiak M, Butler P, Brandt L, Swanston C (2017) Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models. Landsc Ecol 32:1327–1346. CrossRefGoogle Scholar
  40. Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. CrossRefGoogle Scholar
  41. Keeling CD, Whorf TP 2009. Trends: a compendium of data on global change. Carbon Dioxide Inf Anal CentGoogle Scholar
  42. Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Chang Biol 17:565–579. CrossRefGoogle Scholar
  43. Körner C, 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd ed. SpringerGoogle Scholar
  44. Kostiainen K, Kaakinen S, Saranpää P, Sigurdsson BD, Lundqvist S-O, Linder S, Vapaavuori E (2009) Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated [CO 2 ] and temperature. Glob Chang Biol 15:368–379. CrossRefGoogle Scholar
  45. Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222. CrossRefGoogle Scholar
  46. Kramer K, Bijlsma R-J, Hickler T, Thuiller W (2012) Why would plant species become extinct locally if growing conditions improve? Int J Biol Sci 8:1121–1129. CrossRefGoogle Scholar
  47. Landsberg J (2003) Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res 33:385–397. CrossRefGoogle Scholar
  48. Landsberg J, Waring R (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228. CrossRefGoogle Scholar
  49. Lawler JJ, Shafer SL, White D, Kareiva P, Maurer EP, Blaustein AR, Bartlein PJ (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90:588–597. CrossRefGoogle Scholar
  50. Linder HP, Bykova O, Dyke J, Etienne RS, Hickler T, Kühn I, Marion G, Ohlemüller R, Schymanski SJ, Singer A (2012) Biotic modifiers, environmental modulation and species distribution models. J Biogeogr 39:2179–2190. CrossRefGoogle Scholar
  51. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. CrossRefGoogle Scholar
  52. Luoto M, Pöyry J, Heikkinen RK, Saarinen K (2005) Uncertainty of bioclimate envelope models based on the geographical distribution of species. Glob Ecol Biogeogr 14:575–584. CrossRefGoogle Scholar
  53. Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Model 220:3512–3520. CrossRefGoogle Scholar
  54. McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15:183–206. CrossRefGoogle Scholar
  55. Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connectivity affect future migration and ranges of European trees. Glob Ecol Biogeogr 21:164–178. CrossRefGoogle Scholar
  56. Meineri E, Deville A-S, Grémillet D, Gauthier-Clerc M, Béchet A (2015) Combining correlative and mechanistic habitat suitability models to improve ecological compensation. Biol Rev 90:314–329. CrossRefGoogle Scholar
  57. Meller L, Cabeza M, Pironon S, Barbet-Massin M, Maiorano L, Georges D, Thuiller W (2014) Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers Distrib 20:309–321. CrossRefGoogle Scholar
  58. Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–1313. CrossRefGoogle Scholar
  59. Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning J-C (2009) Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Glob Ecol Biogeogr 18:437–449. CrossRefGoogle Scholar
  60. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. CrossRefGoogle Scholar
  61. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. CrossRefGoogle Scholar
  62. Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711. CrossRefGoogle Scholar
  63. Pellissier L, Bråthen KA, Vittoz P, Yoccoz NG, Dubuis A, Meier ES, Zimmermann NE, Randin CF, Thuiller W, Garraud L, Van Es J, Guisan A (2013) Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Glob Ecol Biogeogr 22:933–941. CrossRefGoogle Scholar
  64. Prentice IC, Helmisaari H (1991) Silvics of North European trees: compilation, comparisons and implications for forest succession modeling. For Ecol Manag 42:79–93. CrossRefGoogle Scholar
  65. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, LeQuéré C, Scholes RJ, Wallace DWR, 2001. The carbon cycle and atmospheric carbon dioxide, in: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Climate change 2001: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 185–237Google Scholar
  66. Prentice IC, Bondeau A, Cramer W, Harrison SP, Hickler T, Lucht W, Sitch S, Smith B, Sykes MT, 2007. Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change, in: terrestrial ecosystems in a changing world. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 175–192.,
  67. Primicia I, Camarero JJ, Janda P, Čada V, Morrissey RC, Trotsiuk V, Bače R, Teodosiu M, Svoboda M (2015) Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For Ecol Manag 354:77–86. CrossRefGoogle Scholar
  68. Ranjitkar S, Sujakhu NM, Lu Y, Wang Q, Wang M, He J, Mortimer PE, Xu J, Kindt R, Zomer RJ (2016) Climate modelling for agroforestry species selection in Yunnan Province. China Environ Model Softw 75:263–272. CrossRefGoogle Scholar
  69. Reyer C (2015) Forest productivity under environmental change—a review of stand-scale modeling studies. Curr For Reports 1:53–68. Google Scholar
  70. Ruiz-Labourdette D, Nogués-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogeogr 39:162–176. CrossRefGoogle Scholar
  71. Schelhaas M, Eggers J, Lindner M, Nabuurs GJ, Päivinen R, Schuck A, Verkerk PJ, Werf DC, van der Zudin S, 2007. Model documentation for the European forest information scenario model (EFISCEN 3.1. 3). Wageningen and JoensuuGoogle Scholar
  72. Schurman JS, Trotsiuk V, Bače R, Čada V, Fraver S, Janda P, Kulakowski D, Labusova J, Mikoláš M, Nagel TA, Seidl R, Synek M, Svobodová K, Chaskovskyy O, Teodosiu M, Svoboda M (2018) Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob Chang Biol 24:2169–2181. CrossRefGoogle Scholar
  73. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185. CrossRefGoogle Scholar
  74. Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637. CrossRefGoogle Scholar
  75. Smith B, Wårlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S (2014) Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11:2027–2054. CrossRefGoogle Scholar
  76. Snell RS, Huth A, Nabel JEMS, Bocedi G, Travis JMJ, Gravel D, Bugmann H, Gutiérrez AG, Hickler T, Higgins SI, Reineking B, Scherstjanoi M, Zurbriggen N, Lischke H (2014) Using dynamic vegetation models to simulate plant range shifts. Ecography (Cop.) 37:1184–1197. CrossRefGoogle Scholar
  77. Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573. CrossRefGoogle Scholar
  78. Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23:203–233Google Scholar
  79. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. CrossRefGoogle Scholar
  80. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250. CrossRefGoogle Scholar
  81. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152. CrossRefGoogle Scholar
  82. Thuiller W, Lafourcade B, Araujo M (2009a) ModOperating manual for BIOMOD, Thuiller W, Lafourcade B (2010) BIOMOD: species/climate modelling functions. R package version 2009:1–1Google Scholar
  83. Thuiller W, Lafourcade B, Engler R, Araújo M (2009b) BIOMOD–a platform for ensemble forecasting of species distributions. Ecography (Cop.) 32:369–373. CrossRefGoogle Scholar
  84. Thuiller W, Münkemüller T, Schiffers KH, Georges D, Dullinger S, Eckhart VM, Edwards TC, Gravel D, Kunstler G, Merow C, Moore K, Piedallu C, Vissault S, Zimmermann NE, Zurell D, Schurr FM (2014) Does probability of occurrence relate to population dynamics? Ecography (Cop.) 37:1155–1166. CrossRefGoogle Scholar
  85. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16. CrossRefGoogle Scholar
  86. Vitali V, Büntgen U, Bauhus J (2017) Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Chang Biol 23:5108–5119. CrossRefGoogle Scholar
  87. Wårlind D, Smith B, Hickler T, Arneth A (2014) Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model. Biogeosci Discuss 11:151–185. CrossRefGoogle Scholar
  88. Weber MM, Stevens RD, Diniz-Filho JAF, Grelle CEV (2016) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography (Cop.) 40:817–828. CrossRefGoogle Scholar
  89. Woodward F (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar
  90. Zuur A, Ieno E, Smith G 2007 Analysing ecological data. Springer Science & Business MediaGoogle Scholar
  91. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with r. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Global Change and Conservation Group, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Helsinki Institute of Sustainability ScienceUniversity of HelsinkiHelsinkiFinland
  3. 3.Senckenberg Biodiversity and Climate Research Centre (BiK-F)Frankfurt am MainGermany
  4. 4.Institute of Physical GeographyGeosciences, Goethe-UniversityFrankfurt am MainGermany
  5. 5.Greenpeace NordenHelsinkiFinland

Personalised recommendations