Regional Environmental Change

, Volume 19, Issue 2, pp 379–389 | Cite as

Analyzing climate change and surface-subsurface interactions using the Postojna Planina Cave System (Slovenia) as a model system

  • Tanja PipanEmail author
  • Metka Petrič
  • Stanka Šebela
  • David C. Culver
Original Article


Worldwide, there are at least 12 ILTER sites with an emphasis on karst, landforms arising from the combination of high rock solubility and well-developed solutional channel porosity underground, but the study of cave ecosystems has been largely neglected. Only two ILTER sites, both in Slovenia, are primarily caves. Caves are under-represented for several reasons, but especially because of the overall difficulty of access and the lack of a clear research agenda for cave ecosystem studies. We review several aspects of long-term studies in Postojna Planina Cave System (PPCS), proposing our approach as a model for ILTER research in caves. In PPCS, analysis of short-term temperature data shows a muted daily cycle and seasonality, and analysis of long-term temperature data shows an increase, largely the result of climate change. Changes in drip rate of epikarst aquifers above the cave are correlated with rainfall but with lags and complications resulting from differences in longer term rainfall patterns. Analysis of discharge rates indicates a rapid response to precipitation not only in the Pivka River at its sinking, but also at Unica Spring, where discharge is augmented from other parts of the aquifer, including epikarst. Quantitative analysis of the obligate epikarst-dwelling copepod community shows that, unlike most cave communities, complete sampling of the fauna is possible. Finally, organic carbon levels in PPCS indicate likely carbon limitation in the system. These five factors (temperature, drip rate, river discharge, epikarst copepod fauna, and organic carbon) are the appropriate variables for capturing the essential long-term trends in cave ecosystems and their causes.


Carbon limitation Cave ecosystems Epikarst Karst hydrology Long-term studies Temperature in caves 



We thank Wolfgang Cramer, Editor-in-Chief, Thomas Dirnböck, Guest Editor, Christopher Reyer, and two anonymous reviewers for their valuable comments and suggestions.

Funding information

This work was supported by grants from the European Commission (GA: 654359 - H2020 INFRAIA, eLTER and GA: 739558 - H2020 INFRADEV Advance_eLTER), and from the Slovenian Research Agency (ARRS projects “Natural resources of karst show caves: a balance among protection, exploitation, and promotion [no. J7-7100,]” and “Karst research for sustainable use of Škocjan Caves as World Heritage [(no. L7-8268)].

Supplementary material

10113_2018_1349_Fig6_ESM.gif (31 kb)
Supplement 1

Discharge from the sinking of the Pivka River and the emergence at Unica Spring, and precipitation. (GIF 30 kb)

10113_2018_1349_MOESM1_ESM.tif (7 mb)
High-resolution image (TIF 7197 kb)


  1. Auler A (2012) Quartzite caves in South America. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic/Elsevier Press, Amsterdam, pp 635–639. CrossRefGoogle Scholar
  2. Badino G (2010) Underground meteorology—what’s the weather underground? Acta Carsologica 39:427–448. CrossRefGoogle Scholar
  3. Cigna AA (2002) Modern trend[s] in cave monitoring. Acta Carsologica 31:35–54. Google Scholar
  4. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application Accessed 25 Apr 2017
  5. Covington M, Perne M (2015) Consider a cylindrical cave: a physicist’s view of cave and karst science. Acta Carsologica 44:363–380
  6. Crestani G, Anelli F (1939) Ricerche di meteorologia ipogea delle grotte di Postumia. Istitutopolografico dello stato Libreria, RomaGoogle Scholar
  7. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford Univ Press, Oxford. Google Scholar
  8. Culver DC, Pipan T (2013) Subterranean ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 7, 2nd edn. Academic Press, Waltham, pp 49–62. CrossRefGoogle Scholar
  9. Danielopol DL, Rouch R (1991) L'adaptation des organismes au milieu aqautique souterrain. Reflexionssur l'apport des recherches ecologiques recentes. Stygologia 3:129–142Google Scholar
  10. Domínguez-Villar D, Lojen S, Krklec K, Baker A, Fairchild IJ (2015) Is global warming affecting cave temperatures? Experimental and model data from a paradigmatic case study. Clim Dyn 45:569–681. CrossRefGoogle Scholar
  11. Engel AS (2012) Chemoautotrophy. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic/Elsevier Press, Amsterdam, pp 125–134. CrossRefGoogle Scholar
  12. Engel AS (2015) Preface. In: Engel AS (ed) Microbial life of cave systems. De Gruyter, Berlin, pp v–vi. CrossRefGoogle Scholar
  13. Fairchild IJ, Baker A (2012) Speleothem science. From process to past environments. Wiley-Blackwell, Chichester. CrossRefGoogle Scholar
  14. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  15. Friedrich M (2013) Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol 53:50–67. CrossRefGoogle Scholar
  16. Gaberščik A (2003) Jezero, ki izginja. Društvo Ekologov Slovenije, LjubljanaGoogle Scholar
  17. Gams I (1974) Concentration of CO2 in caves in relation to the air circulation (in the case of the Postojna Cave). Acta Carsologica 6:183–192Google Scholar
  18. Genthon P, Bataille A, Fromant A, D’Hulst D, Bourges F (2005) Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at La Peyrére cave (Ariège, France). J Hydrol 311:157–171. CrossRefGoogle Scholar
  19. Gibert J (1986) Ecologie d’un systeme karstique jurassien. Hydrogéologie, derive animale, transits de matières, dynamique de la population de Niphargus (Crustacé Amphipode). Mém Biospéol 13:1–379Google Scholar
  20. Hartmann A, Baker A (2017) Modelling karst vadose zone hydrology and its relevance for paleoclimatereconstruction. Earth Sci Rev 172:178–192. CrossRefGoogle Scholar
  21. Horvatinčić N, Bronić IK, Obelić B (2003) Differences in the 14C age, δ13C and δ18O of Holocene tufa and speleothem in the Dinaric Karst. Palaeogeogr Palaeoclimatol Palaeoecol 193:139–157. CrossRefGoogle Scholar
  22. Kaufmann G, Gabrovšek F, Turk J (2016) Modelling flow of subterranean Pivka river in Postojnska jama, Slovenia. Acta Carsologica 45:57–70. CrossRefGoogle Scholar
  23. Klimchouk A (2015) The karst paradigm: changes, trends, and perspectives. Acta Carsologica 44:289–313. Google Scholar
  24. Kogovšek J (2010) Characteristics of percolation through the karst vadose zone. ZRC Publishing, LjubljanaGoogle Scholar
  25. Kogovšek J, Šebela S (2004) Water tracing through the vadose zone above Postojnska Jama, Slovenia. Environ Geol 45:992–1001. CrossRefGoogle Scholar
  26. Kogovšek J, Urbanc J (2007) Ocena dinamike premikajoče vode skozi vadozno cono Postojnske jame na osnovi izotopskih značilnosti. Geologija 56:477–486. CrossRefGoogle Scholar
  27. Kresic N (2013) Water in karst: management, vulnerability, and restoration. McGraw-Hill, New YorkGoogle Scholar
  28. Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs. Elsevier, AmsterdamGoogle Scholar
  29. Lange J, Arbel Y, Grodek T, Greenbaum N (2010) Water percolation process studies in a Mediterranean karst area. Hydrol Process 24:1866–1879. CrossRefGoogle Scholar
  30. Mammola S, Goodacre SL, Isaia M (2017) Climate change may drive cave spiders to extinction. Ecography 40.
  31. Mayaud C, Wagner T, Benischke R, Birk S (2013) Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria). Carbonates Evaporites 31:357–365. CrossRefGoogle Scholar
  32. McDonald J, Drysdale R (2007) Hydrology of cave drip waters at varying bedrock depth from a karst system in southeastern Australia. Hydrol Process 21:1737–1748. CrossRefGoogle Scholar
  33. Monroe WH (1972) A glossary of karst terminology. U.S. Geol Survey Water Supply Paper 1899-K. U.S. Geol Survey, Washington. Google Scholar
  34. Novak T, Janžekovič F, Lipovšek S (2013) Contribution of non-troglobiotic terrestrial invertebrates to carbon input in hypogean habitats. Acta Carsologica 42:301–309. CrossRefGoogle Scholar
  35. Odum HT (1957) Trophic structure and productivity of Silver Springs, Florida. Ecol Monogr 27:55–112. CrossRefGoogle Scholar
  36. Palmer AN (2007) Cave geology. Cave Books, DaytonGoogle Scholar
  37. Parker CW, Wolf JA, Auler AS, Barton HA, Senko JM (2013) Microbial reducibility of Fe (III) phases associated with the genesis of iron ore caves in the Iron Quadrangle, Minas Gerais, Brazil. Minerals 3:395–411. CrossRefGoogle Scholar
  38. Petrič M (2011) Spatial and temporal variations of natural traces in a karst spring catchment at the Planina polje (SW Slovenia). In: Bertrand, C. (ed) Proceedings of the 9th conference on limestone hydrogeology = Actes du 9ème congrès d’hydrogéologie en pays calcaire, Besançon, France, September 1–3, 2011. [S. l.]: UMR 6249 Chrono-Environnment. pp 399–402Google Scholar
  39. Petrič M (2017) Flow dynamics in a karst aquifer studied by means of natural and artificial tracers: a case study of the Malenščica and Unica karst springs. Geologija 60:211–221. CrossRefGoogle Scholar
  40. Pipan T (2005) Epikarst – a promising habitat. Založba ZRC, ZRC Publishing, LjubljanaGoogle Scholar
  41. Pipan T, Culver DC (2007) Regional species richness in an obligate subterranean dwelling fauna—epikarst copepods. J Biogeogr 34:854–861. CrossRefGoogle Scholar
  42. Pipan T, Culver DC (2013) Forty years of epikarst: what biology have we learned? Int J Speleol 42:225–233. CrossRefGoogle Scholar
  43. Pipan T, Christman MC, Culver DC (2006) Dynamics of epikarst communities: microgeographic pattern and environmental determinants of epikarst copepods in Organ Cave, West Virginia. Am Midl Nat 156:75–87.[75:DOECMP]2.0.CO;2Google Scholar
  44. Pipan T, Holt N, Culver DC (2010) How to protect a diverse, poorly known, inaccessible fauna: identification of source and sink habitats in the epikarst. Aquat Conserv Mar Freshwat Ecosyst 20:748–755. CrossRefGoogle Scholar
  45. Pipan T, López H, Oromí P, Polak S, Culver DC (2011) Temperature variation and the presence of troglobionts in shallow subterranean habitats. J Nat Hist 45:253–273. CrossRefGoogle Scholar
  46. Rice EW, Baird RB, Eaton AD (2017) Standard methods for the examination of water and wastewater, 23rd edn. Am Pub Health Assoc, Washington, DC. Google Scholar
  47. Romero A (2009) Cave biology. Life in darkness. Cambridge Univ Press, Cambridge. CrossRefGoogle Scholar
  48. Rouch R (1970) Recherches sure les eaux souterraines—12—Le système karstique du Baget. I. Lephénoméne d’ “hémorragie’ au niveau de l’exutoire principal. Ann Spéléol 25:665–709Google Scholar
  49. Rouch R (1977) Considérations sur l’écosystème karstique. Comp Rend Acad Sci, Paris 284:1101–1103Google Scholar
  50. Schneider K, Christman MC, Fagan WF (2011) The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92:765–776. CrossRefGoogle Scholar
  51. Šebela S (2012) Postojna-Planina cave system. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic/Elsevier Press, Amsterdam, pp 618–624. Google Scholar
  52. Šebela S, Turk J (2011) Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theor Appl Climatol 105:371–386. CrossRefGoogle Scholar
  53. Šebela S, Turk J, Pipan T (2015) Cave micro-climate and tourism: towards 200 years (1819-2015) atPostojnska jama (Slovenia). Cave Karst Sci 42:78–85Google Scholar
  54. Simon KS (2013) Organic matter flux in the epikarst of the Dorvan karst. Acta Carsologica 42:237–244. CrossRefGoogle Scholar
  55. Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J N Am Benthol Soc 20:550–563. CrossRefGoogle Scholar
  56. Simon KS, Benfield EF (2002) Ammonium retention and whole-stream metabolism in cave streams. Hydrobiologia 482:31–39. CrossRefGoogle Scholar
  57. Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic films in cave streams. Ecology 84:2395–2406. CrossRefGoogle Scholar
  58. Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon incaves. J Cave Karst Stud 69:279–284Google Scholar
  59. Simon KS, Pipan T, Ohno T, Culver DC (2010) Spatial and temporal patterns in abundance and character of dissolved organic matter in two karst aquifers. Fundam Appl Limnol 177:81–92. CrossRefGoogle Scholar
  60. Sket B (1979) Jamska favna notranjskega trikotnika (Cerknica-Postojna-Planina), njena ogroženost in naravovarstveni pomen. Varstvo Narave 12:45–59Google Scholar
  61. Sket B, Velkovrh F (1981) Postojnsko-Planinski jamski sistem kot model za preučevanje onesnaženjapodzemeljskih voda. Naše Jame 22:27–44Google Scholar
  62. Turk J (2010) Hydrological role of large conduits in karst drainage system: examples from the Ljubljanica River catchment area. Dissertation, University of Nova GoricaGoogle Scholar
  63. Venarsky MP, Huntsman BM, Huryn AD, Benstead JP, Kuhajda BR (2014) Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems. Oecologia 176:859–869. CrossRefGoogle Scholar
  64. Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10. CrossRefGoogle Scholar
  65. Worthington RH, Soley RVN (2017) Identifying turbulent flow in carbonate aquifers. J Hydrol 552:70–80. CrossRefGoogle Scholar
  66. Worthington SRH, Jeannin P-Y, Alexander EC, Davies GJ, Schindel GM (2017) Contrasting definitions for the term ‘karst aquifer’. Hydrogeol J 25:1237–1240. CrossRefGoogle Scholar
  67. Zagmajster M, Culver DC, Sket B (2008) Species richness patterns of obligate subterranean beetles in a global biodiversity hotspot—effect of scale and sampling intensity. Divers Distrib 14:95–105. CrossRefGoogle Scholar
  68. Zagmajster M, Culver DC, Christman MC, Sket B (2010) Evaluating the sampling bias in pattern of subterranean species richness—combining approaches. Biodivers Conserv 19:3035–3048. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tanja Pipan
    • 1
    Email author
  • Metka Petrič
    • 1
  • Stanka Šebela
    • 1
  • David C. Culver
    • 1
    • 2
  1. 1.Karst Research Institute at ZRC SAZUPostojnaSlovenia
  2. 2.Department of Environmental ScienceAmerican UniversityWashingtonUSA

Personalised recommendations