Regional Environmental Change

, Volume 18, Issue 2, pp 595–605 | Cite as

Pruning waste management and climate change in Sierra Mágina’s olive groves (Andalusia, Spain)

  • Petra BenyeiEmail author
  • Marianne Cohen
  • Etienne Gresillon
  • Stéphane Angles
  • Eduardo Araque-Jiménez
  • María Alonso-Roldán
  • Isidro Espadas-Tormo
Original Article


In the context of climate change, concern is raising about the negative effects of some pruning waste management practices. On the one hand, burning of pruning residue is seen as controversial regarding its contribution to greenhouse gas emissions. On the other hand, chipping the wood and using it as mulch is seen as highly risky regarding pest and disease control. Considering these issues, it is important to try to understand how and why these practices are adopted. In this study, we conducted in-depth interviews and survey questionnaires in the olive-growing region of Sierra Mágina (Andalusia) in order to explore (1) which were the pruning waste management practices in place, (2) which had been these practices in the past, and (3) which were the factors influencing the choice of different practices. Since 2010, there has been a shift in pruning waste management practices in this region, from stubble burning to chipping. This change seems to be led by older/retired farmers that have young and non-inherited groves. Moreover, this change is shown not to be necessarily a result of “greening” in agriculture but rather a result of intensification and mechanization. These results are discussed regarding the processes of innovation adoption in the region and the possible unforeseen externalities that derive from this change in pruning waste management practices.


Climate change Changing practices Lexicometry Olive groves Pruning waste management Sierra Mágina 



We would like to thank all the researchers who have collaborated on this project series for their corrections and suggestions, as well as to the anonymous reviewers and the editor of this journal for their comments and insights. We would also like to thank the locals of Sierra Mágina for their time and enthusiasm, especially to Miguel Yanes for facilitating researcher’s housing and most of the interviews. Finally, we are also grateful to James Benyei for the proof reading of this manuscript.

Funding information

This research was conducted in the context of the project “OLIZERO: Stratégies locales de valorisation énergétique de la biomasse. Vers des territoires oléicoles zéro carbone?” which was funded by the University Sorbonne Paris Cité under the Idex projects “Projet interdisciplinaire Lied ‘Les énergies de demain’”.

Supplementary material

10113_2017_1230_MOESM1_ESM.pdf (153 kb)
ESM 1 (PDF 152 kb)


  1. Aguilera E, Guzmán G, Alonso A (2015) Greenhouse gas emissions from conventional and organic cropping systems in Spain. II. Fruit tree orchards. Agron Sustain Dev 35:725–737. CrossRefGoogle Scholar
  2. Alonso-Roldán M (2010) The future of olive groves in sierra mágina regarding climate change. Analysis of farmers’ perceptions. Master Thesis. Gent UniversityGoogle Scholar
  3. Angles S (2014) Les paysages de l’olivier, entre le mythe de la “méditerranéité” et la realité des enjeux territoriaux. Caiet Echinox 27:259–266Google Scholar
  4. Araque-Jimenez E (2008) Luces y sombras de la expansión olivarera en sierra mágina. Sumuntán 25:65–96Google Scholar
  5. Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P (2002) Mitigation of the greenhouse effect. Increasing carbon stocks in French agricultural soils? INRA, Scientific Assessment unit for Expertise, ParisGoogle Scholar
  6. Ballais J-L, Cohen M, Bonté P, Larromanière M, Lefèvre I, Maingre A, Poumailloux A, Roussin A, Sol S (2013) Hydric erosion in Sierra Magina olive groves (Andalusia, Spain) – prospects for sustainable development. Z Geomorphol 57:1–23. CrossRefGoogle Scholar
  7. Banville C, Landry M, Martel J-M, Boulaire C (1998) A stakeholder approach to MCDA. Syst Res Behav Sci 15:15–32.<15::AID-SRES179>3.0.CO;2-B CrossRefGoogle Scholar
  8. Blackstock KL, Ingram J, Burton R, Brown KM, Slee B (2010) Understanding and influencing behaviour change by farmers to improve water quality. Sci Total Environ 408:5631–5638. CrossRefGoogle Scholar
  9. Calatrava J, Franco JA (2011) Using pruning residues as mulch: analysis of its adoption and process of diffusion in Southern Spain olive orchards. J Environ Manag 92:620–629. CrossRefGoogle Scholar
  10. Calatrava Leyva J, Franco Martínez JA, González Roa MC (2007) Analysis of the adoption of soil conservation practices in olive groves: the case of mountainous areas in Southern Spain. Spanish J Agric Res 5:249. CrossRefGoogle Scholar
  11. Chliyeh M, Achbani EH, Rhimini Y, Selmaoui K, Touhami A O, Filali-Maltouf A, Modafar C E, Moukhli A, Oukabli A, Benkirane R, Douira A (2014) Pathogenicity of four fungal species on fruits and leaves of the olive tree (Olea Europaea L.) Int J Pure Appl Sci 2:1–9Google Scholar
  12. Cohen M, Ronchail J, Alonso-Roldán M, Morcel C, Angles S, Araque-Jimenez E, Labat D (2014) Adaptability of Mediterranean agricultural systems to climate change. The example of the Sierra Mágina olive-growing region (Andalusia, Spain). Part I: past and present. Weather Clim Soc 6:380–398.
  13. Cohen M, Angles S, Marquez C, Araque-Jiménez E (2015) The olive grove: productive area or landscape heritage? A Comparison between Andalusia (Spain) and Southern Alps (France). In: Luginbuhl Y, Howard P, Terrasson D (eds) Landscape and sustainable development, the French perspective. Ashgate, Farnham, pp 121–132Google Scholar
  14. Cohen M, Lepesant G, Lamari F, Bilodeau C, Benyei P, Angles S, Bouillon J, Bourrand K, Landoulsi R, Jaboeuf D, Alonso-Roldán M, Espadas-Tormo I, Belandria V, Silar P, Dicko M (2017) Biomolecules from olive pruning waste in Sierra Mágina – engaging the energy transition by multi-actor and multidisciplinary analyses. J Environ Manag.
  15. Colombo S, Perujo-Villanueva M (2017) Analysis of the spatial relationship between small olive farms to increase their competitiveness through cooperation. Land Use Policy 63:226–235. CrossRefGoogle Scholar
  16. Corbin J, Strauss A (1990) Grounded theory research: procedures, Canons and Evaluative Criteria. Z Soziol.
  17. Costa Pérez JC, Lozano Arribas R, Aragonés Espino J, Calvo Amuedo M J, González Sitges J B, Molinillo Guerra A J, Del Pino J Ó, Santiago Gahete A (1999) Plan andaluz de control de la desertificación: sostenibilidad del olivar. In: VIII Simposio Cientifico-Tecnico, foro olivar y medioambienteGoogle Scholar
  18. Dicko M, Lamari FD, Lepesant G, Silar P, Bilodeau C, Cohen M (2016) Biomolecules from olive pruning waste in Sierra Mágina. In: CYPRUS 2016 4th International Conference on Sustainable Solid Waste Management, Limassol, GreeceGoogle Scholar
  19. Dowling M (2008) Atlas.ti (software). In: Given L (ed) The SAGE encyclopedia of qualitative research methods. SAGE Publications, Inc, Thousand Oaks, pp 37–38Google Scholar
  20. Edwards-Jones G (2006) Modelling farmer decision-making: concepts, progress and challenges. Anim Sci 82:783–790. CrossRefGoogle Scholar
  21. García Brenes MD (2007) Transformaciones en la organización del trabajo en el cultivo del olivar. El caso de Andalucía mundo Agrario 7(14)Google Scholar
  22. Garnier B, Guérin-Pace F (2010) Appliquer les méthodes de la statistique textuelle. CEPED, ParisGoogle Scholar
  23. Gavard-Perret ML, Gotteland D, Haon C, Jolibert A (2012) Méthodologie de la recherche: réussir son mémoire ou sa thèse en sciences de gestion. Pearson Education France, MontreuilGoogle Scholar
  24. Geels F, Schot J (2007) Typology of sociotechnical transition pathways. Res Policy 36:399–417. CrossRefGoogle Scholar
  25. Göb R, McCollin C, Ramalhoto MF (2007) Ordinal methodology in the analysis of Likert scales. Qual Quant 41:601–626. CrossRefGoogle Scholar
  26. Hardison JR (1976) Fire and flame for plant disease control. Annu Rev Phytopathol 14:355–379. CrossRefGoogle Scholar
  27. Hayashi K (2000) Multicriteria analysis for agricultural resource management: a critical survey and future perspectives. Eur J Oper Res 122:486–500. CrossRefGoogle Scholar
  28. Hernández Ortiz M (2010) La iniciativa emprendedora y la empresa familiar oleícola como motores de desarrollo en el ámbito rural. In: ADR Sierra Magina (ed) El olivar: Paisaje, patrimonio y desarrollo sostenible. Gráficas La Paz, Torredonjimeno, Jaén, pp 11–22Google Scholar
  29. INE (2012) Instituto nacinal de estadística.
  30. Jaeger SR, Bava CM, Worch T, Dawson J, Marshall D W (2011) The food choice kaleidoscope. A framework for structured description of product, place and person as sources of variation in food choices. Appetite 56:412–423.
  31. Koski RD, Jacobi WR (2004) Tree pathogen survival in wood chip mulch. J Arboric 30:165–171Google Scholar
  32. LaCal Herrera JA (2013) Viabilidad de la integración de una plata de gasificación de biomasa. Universiad de Jaén, JaénGoogle Scholar
  33. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (80-) 304:1623–1627 ST–Soil carbon sequestration impacts. CrossRefGoogle Scholar
  34. Le Roux B, Rouanet H (2010) Multiple correspondence analysis. Quantitative Applications in the Social Sciences (vol. 163). SAGE Publications, LondonCrossRefGoogle Scholar
  35. López Cordero J, González Cano J (2003) Conocer Mágina. CISMA, CarchalejoGoogle Scholar
  36. Marpsat M (2010) La méthode Alceste. Sociologie 1(1)Google Scholar
  37. Parra-López C, Calatrava-Requena J (2005) Factors related to the adoption of organic farming in Spanish olive orchards. Spanish J Agric Res 3:5. CrossRefGoogle Scholar
  38. Parra-Lopez C, De-Haro-Giménez T, Calatrava-Requena J (2007) Diffusion and adoption of organic farming in the southern Spanish olive groves. J Sustain Agric 30:105–151. CrossRefGoogle Scholar
  39. Patton QM (1990) Qualitative evaluation and research methods, Second. Sage Publications Inc, LondonGoogle Scholar
  40. Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A (2014) Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Natl Acad Sci U S A 111:5598–5603. CrossRefGoogle Scholar
  41. Poppe KJ, Termeer CJAM, Slingerland M (2009) Transitions towards sustainable agriculture and food chains in peri-urban areas. Wageningen Academic Publishers, WageningenCrossRefGoogle Scholar
  42. Ratinaud P, Déjean S (2009) IRaMuTeQ: implémentation de la méthode ALCESTE d’analyse de texte dans un logiciel libre. MASH: Modélisation Appliquée aux Sciences Humaines et Sociales, Toulouse - Le MirailGoogle Scholar
  43. Reinert M (1983) Une méthode de classification descendante hiérarchique : application à l’analyse lexicale par contexte. Cah Anal Donnees 8:187–198Google Scholar
  44. Reinert M (1986) Un logiciel d’analyse lexicale: Alceste. Cah Anal Donnees 11:471–484Google Scholar
  45. Rodríguez-Entrena M, Arriaza M (2013) Adoption of conservation agriculture in olive groves: evidences from southern Spain. Land Use Policy 34:294–300. CrossRefGoogle Scholar
  46. Rodríguez-Entrena M, Arriaza M, Gómez-Limón JA (2013) Determining economic and social factors in the adoption of cover crops under mower control in olive groves. Agroecol Sustain Food Syst 38:69–91. CrossRefGoogle Scholar
  47. Rogers E (2003) Diffusion of innovations. The Free Press, New YorkGoogle Scholar
  48. Ronchail J, Cohen M, Alonso-Roldán M, Garcin H, Sultan B, Angles S (2014) Adaptability of Mediterranean agricultural systems to climate change: the example of the Sierra Mágina olive-growing region (Andalusia, Spain). Part II: The Future. Weather Clim Soc 6:451–467.
  49. Sánchez Martínez J, Gallego Simón VJ (2010) La olivicultura ecológica en Sierra Mágina: una aproximación inicial. In: ADR Sierra Magina. In: ADR Sierra Magina (ed) El olivar: Paisaje, patrimonio y desarrollo sostenible. Gráficas La Paz, Torredonjimeno, Jaén, pp 141–162Google Scholar
  50. Sanz Cañada J, Garcia Bernes MD, Barneo Alcántara M (2013) El aceite de oliva de montaña en Jaén : cadena de valor y bienes públicos. The Institute for Prospective Technological Studies, SevillaGoogle Scholar
  51. Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strateg Glob Chang 7:85–114. CrossRefGoogle Scholar
  52. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813.
  53. TGSS (2007) Tesorería General de la Seguridad Social.
  54. Umeå University (2013) OpenCode 4.0Google Scholar
  55. van der Ploeg JD (2009) The new peasantries: struggles for autonomy and sustainability in an era of empire and globalization. Earthscan, LondonGoogle Scholar
  56. Vilar Hernández J, Velasco Gámez M (2010) Incidencia del modo de explotación del olivo sobre la renta neta del productor. Retos y alternativas para el olivar tradicional extensivo. In: ADR Sierra Magina (ed) El olivar: Paisaje, patrimonio y desarrollo sostenible. Gráficas La Paz, Torredonjimeno, Jaén, pp 233–264Google Scholar
  57. Warlop F (2006) Limitation des populations de ravageurs de l’olivier par le recours à la lutte biologique par conservation. Cah Agric 15:449–455Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut de Ciència i Tecnologia AmbientalsUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.ENeC, UMR CNRS-Paris IV 8185Université Paris-SorbonneParisFrance
  3. 3.LADYSS, UMR 7533Université Paris Diderot-Paris 7ParisFrance
  4. 4.HUM112, Departamento de Antropología, Geografía e HistoriaUniversidad de JaénJaénSpain
  5. 5.NGO PASOSGranadaSpain

Personalised recommendations