Regional Environmental Change

, Volume 18, Issue 2, pp 425–436 | Cite as

Drivers of broadleaved evergreen species spread into deciduous forests in the southern Swiss Alps

  • Marco Conedera
  • Thomas Wohlgemuth
  • Matteo Tanadini
  • Gianni Boris Pezzatti
Original Article

Abstract

The spread of non-native species into natural communities is a noticeable phenomenon linked to global change. Drivers of such invasions, however, may differ according to specific regional environments. Here, we aim at disentangling the role of selected climate and non-climate drivers on the spread of native (Hedera helix and Ilex aquifolium) and non-native (Prunus laurocerasus and Trachycarpus fortunei) evergreen species in mature deciduous forests in southern Switzerland. Covers of target evergreens were determined using 200 quadratic plots of 100 m2, distributed on a regular grid of 100 × 100 m and spanning a steep climatic gradient ranging from −0.4 to 3.0 °C in the average temperature of the coldest month. Species covers were used as response variables to be related to climate, stand structure, disturbances, propagule pressure and geomorphology proxies by performing tobit regressions. Propagule pressure resulted to be the main driver of occurrence for three considered species, while meso-climate and stand structure played only a secondary role. In contrast, the presence of native I. aquifolium was mostly correlated with the temperature of the coldest month, though with an overall low impact on cover. Our study demonstrates different drivers of invasion for native and non-native species with similar life history traits. In particular, differences emerge from ecological requirements (niche) and propagule pressure. The ongoing spread of evergreen broadleaved species at the regional scale demonstrates how evergreens invade a largely empty ecological niche, mainly issued by land-use change rather than climate warming.

Keywords

Global change Propagule pressure Hedera helix Ilex aquifolium Prunus laurocerasus Trachycarpus fortunei 

Notes

Acknowledgments

We would like to thank Kerstin Kruczek, Tobias Frank and Eva Dorsch for their help during field work. We thank Sylvia Dingwall for revising the English text.

Supplementary material

10113_2017_1212_MOESM1_ESM.pdf (704 kb)
Online resource 1 Habitus of the studied evergreens (PDF 703 kb)
10113_2017_1212_MOESM2_ESM.pdf (249 kb)
Online resource 2 Why Tobit regression? (PDF 248 kb)
10113_2017_1212_MOESM3_ESM.pdf (1.9 mb)
Online resource 3 Detailed analysis procedure and results (PDF 1895 kb)

References

  1. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi: 10.1078/1433-8319-00004 CrossRefGoogle Scholar
  2. Andergassen S, Bauer H (2002) Frost hardiness in the juvenile and adult life phase of ivy (Hedera helix L.) Plant Ecol 161:207–213. doi: 10.1023/A:1020365422879 CrossRefGoogle Scholar
  3. Anliker J (1950) Die im Freien aushaltenden Palmen der Südschweiz. Schweizerische Beiträge zur Dendrologie 2:33–51Google Scholar
  4. Arnaud MT, Chassany JP, Dejean R, Ribart J, Queno L (1997) Economic and ecological consequences of the disappearance of traditional practices related to chestnut groves. J Environ Manag 49:373–391. doi: 10.1006/jema.1995.0120 CrossRefGoogle Scholar
  5. Banfi E, Galasso G (2008) Diffusione e invasività della palma Trachycarpus fortunei. In: Galasso G, Chiozzi G, Azuma M, Banfi E (eds) Le specie alloctone in Italia: censimenti, invasività e piani di azione. Memorie Società italiana di Sciente naturali / Museo civico di Storia naturale Milano, Milano, pp 21–22Google Scholar
  6. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi: 10.1016/j.tree.2011.03.023 CrossRefGoogle Scholar
  7. Blaser P (1973) Die Bodenbildung auf Silikatgestein im südlichen Tessin. Mitteilungen der Eidgenössen Forschungsanstalt für Wald, Schnee und Landschaft 49:253–340Google Scholar
  8. Bodin J, Badeau V, Bruno E, Cluzeau C, Moisselin J-M, Walther G-R, Dupouey J-L (2013) Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation? J Veg Sci 24:269–283. doi: 10.1111/j.1654-1103.2012.01456.x CrossRefGoogle Scholar
  9. Callauch R (1983) Untersuchungen zur Biologie und Vergesellschaftung der Stechpalme (Ilex aquifolium). Gesamthochschule in Kassel, Kassel, p 186Google Scholar
  10. Carloni T (1998) La grande trasformazione del territorio. In: Ceschi R (ed) Storia del cantone Ticino: il Novecento. Edizioni Casagrande, Bellinzona, pp 671–700Google Scholar
  11. Carraro G, Gianoni P, Mossi R (1999) Climatic influence on vegetation changes: a verification on regional scale of the Laurophyllisation. In: Klotzli F, Walther GR (eds) Conference on recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Birkhäuser Verlag, Basel, pp 31–51CrossRefGoogle Scholar
  12. Castagneri D, Garbarino M, Nola P (2013) Host preference and growth patterns of ivy (Hedera helix L.) in a temperate alluvial forest. Plant Ecol 214:1–9. doi: 10.1007/s11258-012-0130-5 CrossRefGoogle Scholar
  13. Chytry M, Pysek P, Wild J, Pino J, Maskell LC, Vila M (2009) European map of alien plant invasions based on the quantitative assessment across habitats. Divers Distrib 15:98–107. doi: 10.1111/j.1472-4642.2008.00515.x CrossRefGoogle Scholar
  14. Conedera M, Hofmann C, Tinner W (1999) Vegetation shift and laurophyllisation: the possible role of forest fires. In: Klötzli F, Walther G-R (eds) Conference on recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Birkhäuser Verlag, Basel, pp 69–84CrossRefGoogle Scholar
  15. Conedera M, Stanga P, Lischer C, Stöckli V (2000) Competition and dynamics in abandoned chestnut orchards in southern Switzerland. Ecol Mediterr 26:101–112Google Scholar
  16. Conedera M, Stanga P, Oester B, Bachmann P (2001) Different post-culture dynamics in abandoned chestnut orchards. Forest Snow Landsc Res 76:487–492Google Scholar
  17. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  18. Delarze R, Caldelari D, Hainard P (1992) Effects of fire on forest dynamics in southern Switzerland. J Veg Sci 3:55–60. doi: 10.2307/3235998 CrossRefGoogle Scholar
  19. Dolezil J (2007) Die Bedeutung des Klimawandels und biotischer Interaktionen für die Ausbreitung der invasiven Palme Trachycarpus fortunei im Tessin. Master thesis, Georg-August-Universität zu Göttingen, Göttingen, pp. 120Google Scholar
  20. Dullinger I, Wessely J, Bossdorf O, Dawson W, Essl F, Gattringer A, Klonner G, Kreft H, Kuttner M, Moser D, Pergl J, Pyšek P, Thuiller W, van Kleunen M, Weigelt P, Winter M, Dullinger S (2017) Climate change will increase the naturalization risk from garden plants in Europe. Glob Ecol Biogeogr 26:43–53. doi: 10.1111/geb.12512 CrossRefGoogle Scholar
  21. Ferrata C (2007) La Fabrication du paysage dans la région des lacs du Sud des Alpes. Le Globe 147:28–47Google Scholar
  22. Fischer R (2004) Ilex aquifolium (Stechpalme). Verbreitung und Soziologie im Bezirk Kirchdorf/Krems in Oberösterreich. Beiträge zur Naturkunde Oberösterreichs 13:201–212Google Scholar
  23. Freuler B (1906) Verbreitung der wichtigsten Kulturgewächse, sowie einiger ziemlich allgemein angebauter exotischer Zier- und Nutzhölzer im südl. Tessin Schweiz Gartenbau 19:108–109Google Scholar
  24. Gianoni P, Carraro G, Klötzli F (1988) Thermophile, an laurophyllen Pflanzenarten reiche Waldgesellschaften im hyperinsubrischen Seenbereich des Tessins. Berichte des Geobotanischen Institutes, ETH, Stiftung Rübel, Zürich 54:164–180Google Scholar
  25. Grund K, Conedera M, Schröder H, Walther GR (2005) The role of fire in the invasion process of evergreen broad-leaved species. Basic Appl Ecol 6:47–56. doi: 10.1016/j.baae.2004.07.005 CrossRefGoogle Scholar
  26. Gurvich DE, Tecco PA, Diaz S (2005) Plant invasions in undisturbed ecosystems: the triggering attribute approach. J Veg Sci 16:723–728. doi: 10.1111/j.1654-1103.2005.tb02415.x CrossRefGoogle Scholar
  27. Heinrichs S, Schmidt W (2015) Dynamics of Hedera helix L. in central European beech forests on limestone: results from long-term monitoring and experimental studies. Plant Ecol 216:1–15. doi: 10.1007/s11258-014-0412-1 CrossRefGoogle Scholar
  28. Jantsch MC, Fischer A, Fischer HS, Winter S (2013) Shift in plant species composition reveals environmental changes during the last decades: a long-term study in beech (Fagus Sylvatica) forests in Bavaria, Germany. Folia Geobotanica 48:467–491. doi: 10.1007/s12224-012-9148-7 CrossRefGoogle Scholar
  29. Klötzli F, Walther GR (1999) Recent vegetation shifts in Switzerland. In: Klötzli F, Walther GR (eds) Conference on recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Birkhäuser Verlag, Basel, pp 15–29CrossRefGoogle Scholar
  30. Krebs P, Stocker M, Pezzatti GB, Conedera M (2015) An alternative approach to transverse and profile terrain curvature. Int J Geogr Inf Sci 29(4):643–666. doi: 10.1080/13658816.2014.995102 CrossRefGoogle Scholar
  31. Küttel KY (2001) Vegetationskundliche Untersuchungen zur Ausbreitung immergrüner exotischer Gehölz eim Laganese. Master thesis. Zurich, University of Zurich, pp. 74Google Scholar
  32. Labhart TP (2005) Geologie der Schweiz. Ott Verlag, ThunGoogle Scholar
  33. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 CrossRefGoogle Scholar
  34. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536. doi: 10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2 CrossRefGoogle Scholar
  35. Marco A, Lavergne S, Dutoit T, Bertaudiere-Montes V (2010) From the backyard to the backcountry: how ecological and biological traits explain the escape of garden plants into Mediterranean old fields. Biol Invasions 12:761–779. doi: 10.1007/s10530-009-9479-3 CrossRefGoogle Scholar
  36. Metcalfe DJ (2005) Hedera helix L. J Ecol 93:632–648. doi: 10.1111/j.1365-2745.2005.01021.x CrossRefGoogle Scholar
  37. MeteoSwiss (2017) Normal value charts. Total precipitation (30 years average 1981–2010. http://www.meteoswiss.admin.ch/home/climate/past/climate-normals/norm-value-charts.html?filters=precip_8110_yy. Accessed 3 March 2017
  38. Møller LA, Skou A-MT, Kollmann J (2012) Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats? Urban For Urban Green 11:59–64. doi: 10.1016/j.ufug.2011.10.002 CrossRefGoogle Scholar
  39. Moran EV, Alexander JM (2014) Evolutionary responses to global change: lessons from invasive species. Ecol Lett 17:637–649. doi: 10.1111/ele.12262 CrossRefGoogle Scholar
  40. Mosteller F, Tukey JW (1977) Data analysis and regression—a second course in statistics. Addison-Wesley, ReadingGoogle Scholar
  41. Müller A (2000) Zur Bedeutung der Vögel für die Ausbreitung von exotischen Pflanzen. Master thesis. ETH Zurich, Zurich, pp 81Google Scholar
  42. Muster S, Elsenbeer H, Conedera M (2007) Small-scale effects of historical land use and topography on post-cultural tree species composition in an Alpine valley in southern Switzerland. Landsc Ecol 22:1187–1199. doi: 10.1007/s10980-007-9099-1 CrossRefGoogle Scholar
  43. Pezzatti GB, Reinhard M, Conedera M (2010) Swissfire: die neue schweizerische Waldbranddatenbank. Schweiz Z Forstwes 161:465–469CrossRefGoogle Scholar
  44. Pysek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050. doi: 10.1111/j.1365-2699.2006.01578.x CrossRefGoogle Scholar
  45. R Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.r-project.org/. Accessed 29 December 2016
  46. Rehm EM, Lenz A, Hoch G, Körner C (2014) Spring patterns of freezing resistance and photosynthesis of two leaf phenotypes of Hedera helix. Basic Appl Ecol 15:543–550. doi: 10.1016/j.baae.2014.07.009 CrossRefGoogle Scholar
  47. Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. doi: 10.1191/0309133306pp490pr CrossRefGoogle Scholar
  48. Schinz HR (1797) Descrizione della Svizzera italiana nel Settecento. Armando Dadò Editore, LocarnoGoogle Scholar
  49. Schnitzler A, Heuze P (2006) Ivy (Hedera helix L.) dynamics in riverine forests: effects of river regulation and forest disturbance. For Ecol Manag 236:12–17. doi: 10.1016/j.foreco.2006.05.060 CrossRefGoogle Scholar
  50. Schröter C, Schmid E (1956) Flora des Südens. Die Pflanzenwelt Insubriens (Täler zwischen Ortasee und Comersee). Rascher, ZürichGoogle Scholar
  51. Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vila M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. doi: 10.1016/j.tree.2012.07.013 CrossRefGoogle Scholar
  52. Sittig E (1998) Dendroökologische Rekonstruktion der Einwanderungsdynamik laurophyller Neophyten in Rebbrachen des südlichen Tessins. Master thesis, Philipps-Universität, Marburg/Lahn, pp. 138Google Scholar
  53. Stahel WA (2013) The R-function regr and package regr0 for an augmented regression analysis. ETH Zürich. http://stat.ethz.ch/~stahel/regression/regr-description.pdf. Accessed 29 December 2016
  54. Stokes DL, Church ED, Cronkright DM, Lopez S (2014) Pictures of an invasion: English Holly (Ilex aquifolium) in a semi-natural Pacific Northwest forest. Northwest Science 88:75–93. doi: 10.3955/046.088.0204 CrossRefGoogle Scholar
  55. Taylor KT, Maxwell BD, Pauchard A, Nunez MA, Peltzer DA, Terwei A, Rew LJ (2016) Drivers of plant invasion vary globally: evidence from pine invasions within six ecoregions. Glob Ecol Biogeogr 25:96–106. doi: 10.1111/geb.12391 CrossRefGoogle Scholar
  56. Valladares F, Arrieta S, Aranda I, Lorenzo D, Sanchez-Gomez D, Tena D, Suarez F, Pardos JA (2005) Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites. Tree Physiol 25:1041–1052. doi: 10.1093/treephys/25.8.1041 CrossRefGoogle Scholar
  57. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. doi: 10.1111/j.1461-0248.2009.01418.x CrossRefGoogle Scholar
  58. Vergara-Tabares DL, Baaldini J, Peluc SI (2016) Fruiting phenology as a “triggering attribute” of invasion process: do invasive species take advantage of seed dispersal service provided by native birds? Biol Invasions 18:677–687. doi: 10.1007/s10530-015-1039-4 CrossRefGoogle Scholar
  59. Voser P (1999) Causes of shifts in vegetation in the past and present. In: Klötzli F, Walther GR (eds) Conference on recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Birkhäuser Verlag, Basel, pp 53–60CrossRefGoogle Scholar
  60. Walther GR (2000) Climatic forcing on the dispersal of exotic species. Phytocoenologia 30:409–430. doi: 10.1127/phyto/30/2000/409 CrossRefGoogle Scholar
  61. Walther GR (2002) Weakening of climatic constraints with global warming and its consequences for evergreen broad-leaved species. Folia Geobotanica 37:129–139. doi: 10.1007/BF02803195 CrossRefGoogle Scholar
  62. Walther GR (2004) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185. doi: 10.1078/1433-8319-00076 CrossRefGoogle Scholar
  63. Walther GR, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc R Soc B-Biol Sci 272:1427–1432. doi: 10.1098/rspb.2005.3119 CrossRefGoogle Scholar
  64. Walther GR, Gritti ES, Berger S, Hickler T, Tang ZY, Sykes MT (2007) Palms tracking climate change. Glob Ecol Biogeogr 16:801–809. doi: 10.1111/j.1466-8238.2007.00328.x CrossRefGoogle Scholar
  65. Xie Y (2015) Knitr: a general-purpose package for dynamic report generation in R. R package version 1.11. https://cran.r-project.org/web/packages/knitr/index.html. Accessed 29 December 2016
  66. Zanelli R, Egli M, Mirabella A, Giaccai D, Fitze P (2006) Influence of laurophyllous species, Castanea sativa and Quercetum-Betuletum vegetation on organic matter in soils in southern Switzerland and northern Italy. Geoderma 136:723–737. doi: 10.1016/j.geoderma.2006.05.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Community Ecology Research UnitSwiss Federal Institute for Forest, Snow and Landscape Research WSLCadenazzoSwitzerland
  2. 2.Disturbance EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  3. 3.Seminar für Statistik, Departement MathematikETH ZurichZürichSwitzerland
  4. 4.Insubric Ecosystems Research GroupSwiss Federal Institute for Forest, Snow and Landscape Research WSLCadenazzoSwitzerland

Personalised recommendations