Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades

  • Siyang Dong
  • Fei Peng
  • Quangang You
  • Jian Guo
  • Xian Xue
Original Article

Abstract

The high sensitivity of the Tibetan Plateau (TP) to global warming is ascribed not only to its high altitude and low temperature but also to the change in the components of water cycling, such as glaciers’ retreat, permafrost degradation, and lakes’ shrinkage or expansion. Among the components, change in lakes attracts more attention as lakes are crucial for local water management and are easier to monitor. But, how water cycling components respond to global change remains unclear, although they are crucial in understanding the regional environmental change. Lakes, glaciers, and permafrost data derived from meteorological records and remote sensing images were used to detect the change of the water environment on the TP from 1971 to 2013. The climate on TP changed toward a warm-humid condition in the last four decades. Three-quarters of the lakes were significantly expanded over the TP, and the summed area of all the lakes increased by 6061 km2 from 1975 to 2010. Panel regression showed that annual average air temperature (T), annual precipitation (P), and reference crop evapotranspiration (ETo) regulate the change in lake surface area (LSA) on the entire TP. The change in LSA is more related to the change in P than in the other two factors, even in the catchment where lakes are recharged by water from glacier melting and permafrost degradation, especially in extremely arid and arid climate zones. Elevation and size affected the sensitivity of lakes to climate change with lakes in a high-elevation area more sensitive to T and small lakes more sensitive to T, P, and ETo. Warming-induced glacier’s retreat led to the significant lake expansion, while permafrost degradation might be responsible for the lake shrinkage in the seasonally frozen ground area due to the related cryogenic waterproof layer downward. Our results about the responses of lakes to climate change in different catchments were in accordance with the findings of previous studies about several typical lakes, which implied that overall response of all the lakes to climate change could be obtained by examining several typical lakes in the catchment level.

Keywords

Anusplin interpolation Climate change Lake change Panel regression model Remote sensing Tibetan Plateau 

Supplementary material

10113_2017_1211_Fig5_ESM.gif (215 kb)
Fig. S1

The distributions of lakes, meteorological stations, and catchments on the Tibetan Plateau. Catchment 1–13 represent: 1. Chiangtang Catchment; 2. Qaidam Basin; 3. Inland catchment near upstream areas of the Yangtze River; 4. Southern Tibet Inland Catchment; 5. Yellow River Catchment; 6. Yangtze River Catchment; 7. Yarlung Zangbo River Catchment; 8. Hala-Qinghai Lake Catchment; 9. Nujiang-Salween River Catchment; 10. Indus River Catchment; 11. Lantsang-Mekong River Catchment; 12. Dulong-Nmai Hka-Irrawaddy River Catchment; 13. Kunlun-Altun-Qilian Mountains Catchment. Inland catchments: 1, 2, 3, 4 and 8. (GIF 214 kb)

10113_2017_1211_MOESM1_ESM.tif (2.7 mb)
High Resolution Image (TIFF 2748 kb)
10113_2017_1211_Fig6_ESM.gif (154 kb)
Fig. S2

The distributions of climate zones, glaciers and frozen ground types across the Tibetan Plateau (GIF 154 kb)

10113_2017_1211_MOESM2_ESM.tif (1.4 mb)
High Resolution Image (TIFF 1406 kb)
10113_2017_1211_Fig7_ESM.gif (25 kb)
Fig. S3

Statistics of lake number classified by catchment regionalization, climate zone, lake size, elevation, distance to glacier, and frozen ground type (GIF 25 kb)

10113_2017_1211_MOESM3_ESM.tif (2.9 mb)
High Resolution Image (TIFF 2921 kb)
10113_2017_1211_MOESM4_ESM.docx (13 kb)
Supplement 1The background of Tibetan Plateau climate characteristic (DOCX 13 kb)
10113_2017_1211_MOESM5_ESM.docx (15 kb)
Supplement 2Details of lake classification (DOCX 15 kb)
10113_2017_1211_MOESM6_ESM.docx (62 kb)
Supplement 3Details of calculation and statistics (DOCX 61 kb)
10113_2017_1211_MOESM7_ESM.docx (18 kb)
Table S1The basic information of selected 79 meteorological stations on the Tibetan Plateau (DOCX 17 kb)

References

  1. Allen RG, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper no. 56. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  2. Bracht-Flyr B, Istanbulluoglu E, Fritz S (2013) A hydro-climatological lake classification model and its evaluation using global data. J Hydrol 486:376–383. doi:10.1016/j.jhydrol.2013.02.003 CrossRefGoogle Scholar
  3. Cheng GD, Wu TH (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112:F02S03. doi:10.1029/2006JF000631 Google Scholar
  4. Duan KQ, Yao TD, Wang NL, Tian LD, Xu BQ (2008) The difference in precipitation variability between the north and south Tibetan Plateaus. J Glaciol Geocryol 30(5):726–732 (in Chinese, with English Abstr.)Google Scholar
  5. Gao XQ, Tang MC, Feng S (2000) Discussion on the relationship between glacial fluctuation and climate change. Plateau Meteorology 19(1):9–16 (in Chinese, with English Abstr.)Google Scholar
  6. Gao YH, Li X, Leung LR, Chen DL, Xu JW (2015) Aridity changes in the Tibetan Plateau in a warming climate. Environ Res Lett 10:034013. doi:10.1088/1748-9326/10/3/034013 CrossRefGoogle Scholar
  7. Ge SX, Zonggha (2005) A preliminary study on the change of lake areas in western Naqu, Tibet. Tibetan Sci Technol 144:14–18 (in Chinese)Google Scholar
  8. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jenesen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Chang 72:251–298. doi:10.1007/s10584-005-5352-2 CrossRefGoogle Scholar
  9. Immerzeel WW, Van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385. doi:10.1126/science.1183188 CrossRefGoogle Scholar
  10. IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core writing team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, SwitzerlandGoogle Scholar
  11. Jeffrey MW (2009) Introductory econometrics—a modern approach, 4th edn. Nelson Education, CanadaGoogle Scholar
  12. Jiang Y, Luo Y, Zhao ZG, Tao SW (2010) Changes in wind speed over China during 1956-2004. Theor Appl Climatol 99:421–430. doi:10.1007/s00704-009-0152-7 CrossRefGoogle Scholar
  13. Kane DL, Yoshikawa K, McNamara JP (2013) Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeol J 21(1):41–52. doi:10.1007/s10040-012-0937-0 CrossRefGoogle Scholar
  14. Kang SC, Xu YW, You QL, Flugel WA, Pepin N, Yao TD (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5:015101. doi:10.1088/1748-9326/5/1/015101 CrossRefGoogle Scholar
  15. Kendall MG (1975) Rank correlation methods. Charles Griffin, LondonGoogle Scholar
  16. Kleinherenbrink M, Lindenbergh RC, Ditmar PG (2015) Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J Hydrol 521:119–131. doi:10.1016/j.jhydrol.2014.11.063 CrossRefGoogle Scholar
  17. Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tool. Earth Sci Rev 138:313–334. doi:10.1016/j.earscirev.2014.06.006 CrossRefGoogle Scholar
  18. Lei YB, Yao TD, Bird BW, Yang K, Zhai JQ, Sheng YW (2013) Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J Hydrol 483:61–67. doi:10.1016/j.jhydrol.2013.01.003 CrossRefGoogle Scholar
  19. Li SD, Cheng GD (1996) Map of Frozen Ground on Qinghai-Xizang Plateau. Gansu Culture Press, Lanzhou. Provided by Cold and Arid Regions Science Data Center at Lanzhou (http://westdc.westgis.ac.cn)
  20. Li XY, Xu HY, Sun YL, Zhang DS, Yang ZP (2007) Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resour Manag 21:1505–1516. doi:10.1007/s11269-006-9096-1 CrossRefGoogle Scholar
  21. Li H, Xiao PF, Feng XZ, Wan W, Ma RH, Duan HT (2010) Lake changes in spatial evolution and area in source region of three rivers in recent 30 years. J Lake Sci 22(6):862–873 (in Chinese, with English Abstr.)Google Scholar
  22. Li JL, Sheng YW, Luo JC, Shen ZF (2011) Remotely sensed mapping of inland lake area changes in the Tibetan Plateau. J Lake Sci 23(3):311–320 (in Chinese, with English Abstr.)CrossRefGoogle Scholar
  23. Li X, Jin R, Pan XD, Zhang TJ, Guo JW (2012) Changes in the near-surface soil freeze–thaw cycle on the Qinghai–Tibetan Plateau. Int J Appl Earth Obs Geoinf 17:33–42. doi:10.1016/j.jag.2011.12.002 CrossRefGoogle Scholar
  24. Liao JJ, Shen GZ, Li YK (2013) Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. Int J Digit Earth 6(6):1–16. doi:10.1080/17538947.2012.656290 CrossRefGoogle Scholar
  25. Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–2742CrossRefGoogle Scholar
  26. Liu JS, Wang SY, Yu SM, Yang DQ, Zhang L (2009) Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Glob Planet Chang 67:209–217. doi:10.1016/j.gloplacha.2009.03.010 CrossRefGoogle Scholar
  27. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  28. Meng K, Shi XH, Wang E, Liu F (2012) High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000-2010. Chin Sci Bull 57(5):525–534. doi:10.1007/s11434-011-4849-5 CrossRefGoogle Scholar
  29. National Administration of Surveying, Mapping and Geoinformation (1982) National Earth System Science Data Sharing Infrastructure. Data set of catchment system on the Qinghai-Tibetan Plateau (1:1 000 000). (http://www.geodata.cn)
  30. Nie Y, Zhang YL, Liu LS, Zhang JP (2010) Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. J Geogr Sci 20(5):667–686. doi:10.1007/s11442-010-0803-8 CrossRefGoogle Scholar
  31. Nie Y, Zhang YY, Ding MJ, Liu LS, Wang ZF (2013) Lake change and its implication in the vicinity of Mt. Qomolangma (Everest), central high Himalayas, 1970-2009. Environ Earth Sci 68:251–265. doi:10.1007/s12665-012-1736-6 CrossRefGoogle Scholar
  32. Palazzi E, Hardenberg JVH, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res Atmos 118:85–100. doi:10.1029/2012JD018697 CrossRefGoogle Scholar
  33. Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422. doi:10.1038/nature20584 CrossRefGoogle Scholar
  34. Peng XM, Wu QB, Tian MZ (2003) The effect of groundwater Table lowering on ecological environment in the headwaters of the Yellow River. J Glaciol Geocryol 25(6):667–671 (in Chinese, with English Abstr.)Google Scholar
  35. Phan VH, Lindenbergh R, Menenti M (2012) ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int J Appl Earth Obs Geoinf 17:12–22. doi:10.1016/j.jag.2011.09.015 CrossRefGoogle Scholar
  36. SinoMaps Press, Data Sharing Infrastructure of Earth System Science (1990). Map of Climate Regionalization on the Qinghai-Tibetan Plateau (1:1 000 000) (http://www.geodata.cn)
  37. Pu JC, Yao TD, Yang MX, Tian LD, Wang NL, Ageta Y, Fujita K (2008) Rapid decrease of mass balance observed in the Xiao (lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydrol Process 22:2953–2958. doi:10.1002/hyp.6865 CrossRefGoogle Scholar
  38. Qin BQ, Huang Q (1998) Evaluation of the climatic change impacts on the inland lake-a case study of Lake Qinghai, China. Clim Chang 39:695–714CrossRefGoogle Scholar
  39. Song CQ, Huang B, Ke LH (2013) Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens Environ 135:25–35. doi:10.1016/j.rse.2013.03.013 CrossRefGoogle Scholar
  40. Song CQ, Huang B, Ke LH (2014a) Inter-annual changes of alpine inland lake water storage on the Tibetan Plateau: detection and analysis by integrating satellite altimetry and optical imagery. Hydrol Process 28:2411–2418. doi:10.1002/hyp.9798 CrossRefGoogle Scholar
  41. Song CQ, Huang B, Ke LH, Richards KS (2014b) Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: a review. ISPRS J Photogramm Remote Sens 92:26–37. doi:10.1016/j.isprsjprs.2014.03.001 CrossRefGoogle Scholar
  42. Su Z, Liu ZX, Wang WT, Yao TD, Shao WZ, Pu JC, Liu SY (1999) Glacier fluctuations responding to climate change and forecast of its tendency over the Qinghai-Tibet Plateau. Adv Earth Sci 14:607–612 (in Chinese, with English Abstr.)Google Scholar
  43. UNESCO (1979) Map of the world distribution of arid regions. Explanatory note. Man and Biosphere (MAB)Google Scholar
  44. Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost—a review. Vadose Zone J 15(6). doi:10.2136/vzj2016.01.0010
  45. Wan W, Xiao PF, Feng XZ, Li H, Ma RH, Duan HT (2014) Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin Sci Bull 59(10):1021–1035. doi:10.1007/s11434-014-0128-6 CrossRefGoogle Scholar
  46. Wang XW, Gong P, Zhao YY, Xu Y, Cheng X, Niu ZG, Luo ZC, Huang HB, Sun FD, Li XW (2013) Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens Environ 132:131–144. doi:10.1016/j.rse.2013.01.005 CrossRefGoogle Scholar
  47. Wang LZ, Cao LG, Deng XJ, Jia PH, Zhang W, Xu XWH, Zhang KX, Zhao YF, Yan BJ, Hu W, Chen YY (2014) Changes in aridity index and reference evapotranspiration over the central and eastern Tibetan Plateau in China during 1960-2012. Quat Int 349:280–286. doi:10.1016/j.quaint.2014.07.030 CrossRefGoogle Scholar
  48. Wu LZ, Li X (2003) China glacier information system (1:100 000). China Ocean Press, BeijingGoogle Scholar
  49. Xiang LW, Wang HS, Steffen H, Wu P, Jia LL, Jiang LM, Shen Q (2016) Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet Sc Lett 449:228–239. doi:10.1016/j.epsl.2016.06.002 CrossRefGoogle Scholar
  50. Yang W, Yao TD, Xu BQ, Wu GJ, Ma LL, Xin XD (2008) Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau. Chin Sci Bull 53(16):2547–2551. doi:10.1007/s11434-008-0288-3 Google Scholar
  51. Yang K, Ye BS, Zhou DG, Wu BY, Foken T, Qin J, Zhou ZY (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Chang 109:517–534. doi:10.1007/s10584-011-0099-4 CrossRefGoogle Scholar
  52. Yang K, Wu H, Qin J, Lin CG, Tang WJ, Chen YY (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Chang 112:79–91. doi:10.1016/j.gloplacha.2013.12.001 CrossRefGoogle Scholar
  53. Yao TD, Pu JC, Lu AX, Wang YQ, Yu WS (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding region. Arct Antarct Alp Res 39(4):642–650. doi:10.1657/1523-0430%2807-510%29%5BYAO%5D2.0.CO%3B2 CrossRefGoogle Scholar
  54. You QL, Fraedrich K, Ren GY, Pepin N, Kang SC (2012) Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int J Climatol doi. doi:10.1002/joc.3512
  55. Yue TX, Zhao N, Ramsey RD, Wang CL, Fan ZM, Chen CF, Lu YM, Li BL (2013) Climate change trend in China, with improved accuracy. Clim Chang 120:137–151. doi:10.1007/s10584-013-0785-5 CrossRefGoogle Scholar
  56. Zhang YL, Li BY, Zheng D (2002) A discussion on the boundary and area of the Tibetan Plateau in China. Geogr Res 21(1):1–8 (in Chinese, with English Abstr.)Google Scholar
  57. Zhang B, Wu YH, Zhu LP, Wang JB, Li JS, Chen DM (2011) Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. J Hydrol 405:161–170. doi:10.1016/j.jhydrol.2011.05.018 CrossRefGoogle Scholar
  58. Zhang GQ, Xie HJ, Yao TD, Kang SC (2013) Water balance estimates of ten greatest lakes in China using ICEsat and Landsat data. Chin Sci Bull 58(31):3815–3829. doi:10.1007/s11434-013-5818-y CrossRefGoogle Scholar
  59. Zhang GQ, Yao DT, Xie HJ, Zhang KX, Zhu FJ (2014) Lakes' state and abundance across the Tibetan Plateau. Chin Sci Bull 59(24):3010–3021. doi:10.1007/s11434-014-0258-x CrossRefGoogle Scholar
  60. Zhu LP, Xie MP, Wu YH (2010) Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin Sci Bull 55(13):1294–1303. doi:10.1007/s11434-010-0015-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.International platform for dryland research and education, arid land research centerTottori UniversityTottoriJapan

Personalised recommendations