Regional Environmental Change

, Volume 18, Issue 1, pp 223–234 | Cite as

Climate change can reduce shrimp catches in equatorial Brazil

  • Priscila F. M. Lopes
  • Maria Grazia Pennino
  • Fúlvio Freire
Original Article

Abstract

Shrimps are an important and valuable fishing resource, being increasingly exploited worldwide, demanding appropriate management. However, factors such as how shrimps are affected by environmental variables and how such variables are likely to change under a climate change scenario are still poorly known. We used a Brazilian database with 10 years of shrimp catch and effort data, from 20 different small-scale equatorial fishing ports, to test how shrimp fishing productivity is affected by environmental (sea surface temperature (SST), wind, precipitation, and cloudiness), economic (ex-vessel price), spatial (fishing port), and temporal factors (year and month). The results showed that better productivities are reached at higher SST (to a limit 26 °C) and precipitation. Time (year) and space (different fishing villages showed different fishing success) also affected the fishing success. Considering that both temperature and precipitation were important determinants of shrimp productivity, we estimated how such productivity would be affected by climate change. Our results suggest that these fisheries could collapse in a warmer and drier future, which is a possible scenario for the region. Overall, a better understanding of regional shrimp fisheries could permit the development of tailor-made management measures. Besides, this study also shows how an economically important invertebrate stock is sensitive to climate change, which is a warning signal to developing countries, where there is a significant parcel of its population directly dependent on fishery exploitation.

Keywords

Low trophic level species Small-scale fisheries Fishery economics Brazilian northeast 

Notes

Acknowledgements

We thank the fishers from Baía Formosa for helping us in the trawling sampling and for sharing with us their shrimp grounds. We also thank Rayssa Melo for organizing the data and Ludmila Damásio for making the map. Finally, we thank CNPq/MPA for the grant 407046/2012-7. Both PFML and FF thank CNPq for a productivity grant.

Supplementary material

10113_2017_1203_MOESM1_ESM.docx (16 kb)
Figure S1 (DOCX 15 kb)

References

  1. Allison EH, Perry AL, Badjeck M-C, Neil-Adger W, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi: 10.1111/j.1467-2979.2008.00310.x CrossRefGoogle Scholar
  2. Almeida AC, Baeza JA, Fransozo V, Castilho AL, Fransozo A (2012) Reproductive biology and recruitment of Xiphopenaeus kroyeri in a marine protected area in the Western Atlantic: implications for resource management. Aquat Biol 17:57–69. doi: 10.3354/ab00462 CrossRefGoogle Scholar
  3. Ambrizzi T, Araújo M (2012) Sumário executivo: primeiro relatório de avaliação nacional. Painel Brasileiro de Mudanças Climáticas, Rio de JaneiroGoogle Scholar
  4. Andrade LAC (2015) Estratégias de exploração e comércio da pesca artesanal de polvo. Dissertation, Universidade Federal do Rio Grande do NorteGoogle Scholar
  5. Arellano-Torres A, Pérez-Castañeda R, Defeo O (2006) Effects of a fishing gear on an artisanal multispecific penaeid fishery in a coastal lagoon of Mexico: mesh size, selectivity and management implications. Fish Manag Ecol 13:309–317. doi: 10.1111/j.1365-2400.2006.00507.x CrossRefGoogle Scholar
  6. Arnason R (2007) Climate change and fisheries: assessing the economic impact in Iceland and Greenland. Nat Resour Model 20:163–197. doi: 10.1111/j.1939-7445.2007.tb00205.x CrossRefGoogle Scholar
  7. Arreguin-Sanchez F, Zetina-Rejón M, Ramírez-Rodríguez M (2008) Exploring ecosystem-based harvesting strategies to recover the collapsed pink shrimp (Farfantepenaeus duorarum) fishery in the southern Gulf of Mexico. Ecol Model 214:83–94. doi: 10.1016/j.ecolmodel.2007.11.021 CrossRefGoogle Scholar
  8. Begossi A (2010) Small-scale fisheries in Latin America: management models and challenges. Maritime Studies 9:5–12Google Scholar
  9. Béné C, MacFadyen G, Allison EH (2005) Increasing the contribution of small-scale fisheries to poverty alleviation and food security. FAO, RomeGoogle Scholar
  10. Browder JA, Zein-Eldin Z, Criales MM, Robblee MB, Wong S, Jackson TL, Johnson D (2002) Dynamics of pink shrimp (Farfantepenaeus duorarum) recruitment potential in relation to salinity and temperature in Florida bay. Estuaries 25:1355–1371. doi: 10.1007/BF02692230 CrossRefGoogle Scholar
  11. Capparelli MV, Kasten P, Castilho AL, Costa RC (2012) Ecological distribution of the shrimp Litopenaeus schmitti (Burkenroad, 1936) (Decapoda, Penaeoidea) in Ubatuba Bay, São Paulo, Brazil. Invertebr Reprod Dev 56:173–179. doi: 10.1080/07924259.2011.587272 CrossRefGoogle Scholar
  12. Castilho AL, Pie MR, Fransozo A, Pinheiro AP, Costa RC (2008) The relationship between environmental variation and species abundance in shrimp community (Crustacea: Decapoda: Penaeoidea) in south-eastern Brazil. J Mar Biol Assoc U K 88:119–123. doi: 10.1017/S0025315408000313 CrossRefGoogle Scholar
  13. Castro RH, Costa RC, Fransozo A, Mantelatto FL (2005) Population structure of the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862)(Crustacea: Penaeoidea) in the littoral of São Paulo, Brazil. Sci Mar 69:105–112CrossRefGoogle Scholar
  14. Christensen V, Guénette S, Heymans JJ, Walters CJ, Watson R, Zeller D, Pauly D (2003) Hundred-year decline of North Atlantic predatory fishes. Fish Fish 4:1–24. doi: 10.1046/j.1467-2979.2003.00103.x CrossRefGoogle Scholar
  15. Cinner J (2005) Socioeconomic factors influencing customary marine tenure in the Indo-Pacific. Ecol Soc 10:36CrossRefGoogle Scholar
  16. Cinner JE, McClanahan TR, Graham NAJ, Daw TM, Maina J, Stead SM, Wamukota A, Brown K, Bodin O (2012) Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob Environ Change 22:12–20. doi: 10.1016/j.gloenvcha.2011.09.018 CrossRefGoogle Scholar
  17. Cinner JE, Pollnac RB (2004) Poverty, perceptions and planning: why socioeconomics matter in the management of Mexican reefs. Ocean Coast Manag 47:479–493. doi: 10.1016/j.ocecoaman.2004.09.002 CrossRefGoogle Scholar
  18. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836. doi: 10.1080/01621459.1979.10481038 CrossRefGoogle Scholar
  19. de Damasio MAL, Lopes PFM, Pennino MG, Carvalho AR, Sumaila R (2016) Size matters: fishing less and yielding more in smaller-scale fisheries. ICES J Mar Sci J Cons:fsw016. doi: 10.1093/icesjms/fsw016
  20. Davis JL, Metcalfe WJ, Hines AH (2003) Implications of a fluctuating fish predator guild on behavior, distribution, and abundance of a shared prey species: the grass shrimp Palaemonetes pugio. J Exp Mar Biol Ecol 293:23–40. doi: 10.1016/S0022-0981(03)00122-9 CrossRefGoogle Scholar
  21. D’Incao F, Delevedove G, Maggini DE, Maggioni R (1998) Evidência genética da presença de Farfantepenaeus paulensis (Pérez Farfante 1967) no litoral nordeste do Brasil (Decapoda: Penaeidae). Nauplius 6:129–137Google Scholar
  22. D’Incao F, Valenti H, Rodrigues LF (2002) Avaliação da pesca de camarões nas regiões sudeste e sul do Brazil. 1965-1999. Atlantica 24:103–116Google Scholar
  23. Eutrópio FJ, Mariante FLF, Junior PDF, Krohling W (2012) Population parameters of the shrimp Xiphopenaeus kroyeri (Heller, 1862) (Crustacea, Penaeidae), caught by artisanal fisheries in Anchieta, Espírito Santo state - doi: 10.4025/actascibiolsci.v35i2.13408. Acta Sci Biol Sci 35:141–147. doi: 10.4025/actascibiolsci.v35i2.13408 CrossRefGoogle Scholar
  24. FAO (2014) The state of world fisheries and aquaculture: opportunities and challenges. FAO, RomeGoogle Scholar
  25. Ferreira L, Medley P (2005) The southern pink shrimp (Farfantepenaeus notialis) and Atlantic seabob (Xiphopenaeus kroyeri) fisheries of the Trinidad and Tobago trawl fishery. In: CRFM Fishery Report. Secretariat of the Caribbean Regional Fisheries Mechanism, Belize, pp 63–88Google Scholar
  26. Forney K (2000) Environmental models of Cetacean abundance: reducing uncertainty in population trends. Conserv Biol 14:1271–1286CrossRefGoogle Scholar
  27. Freire FA, Luchiari AC, Fransozo V (2011) Environmental substrate selection and daily habitual activity in Xiphopenaeus kroyeri shrimp (Heller, 1862) (Crustacea: Penaeioidea). Indian J Mar Sci 40:325Google Scholar
  28. Furlan M, Castilho AL, Fernandes-Góes LC, Fransozo V, Bertini G, Costa RC (2013) Effect of environmental factors on the abundance of decapod crustaceans from soft bottoms off southeastern Brazil. An Acad Bras Cienc 85:1345–1356. doi: 10.1590/0001-3765201394812 CrossRefGoogle Scholar
  29. Garcia S, Reste LL (1986) Ciclo vitales, dinámica explotación y ordenación de las poblaciones de camarones peneidos costeros. FAO, RomeGoogle Scholar
  30. Gelcich S, Kaiser MJ, Castilla JC, Edwards-Jones G (2008) Engagement in co-management of marine benthic resources influences environmental perceptions of artisanal fishers. Environ Conserv 35:36–45CrossRefGoogle Scholar
  31. Gillett R (2008) Global study of shrimp fisheries. FAO, RomeGoogle Scholar
  32. Gusmão J, Lazoski C, Monteiro FA, Solé-Cava AM (2006) Cryptic species and population structuring of the Atlantic and Pacific seabob shrimp species, Xiphopenaeus kroyeri and Xiphopenaeus riveti. Mar Biol 149:491. doi: 10.1007/s00227-005-0232-x CrossRefGoogle Scholar
  33. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Fiorenza M, D’Agroza C, Bruno JF, Casey KS, Ebert C, Fox HE, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi: 10.1126/science.1149345 CrossRefGoogle Scholar
  34. Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi: 10.1111/j.1461-0248.2005.00871.x CrossRefGoogle Scholar
  35. Heckler GS, da Costa RC, Fransozo A, Rosso S, Shimizu RM (2014) Long-term patterns of spatial and temporal distribution in the seabob shrimp Xiphopenaeus kroyeri (Decapoda: Penaeidae) population in southeastern Brazil. J Crustac Biol 34:326–333. doi: 10.1163/1937240X-00002231 CrossRefGoogle Scholar
  36. Hilborn R, Branch TA, Ernst B, Magnusson A, Minte-Vera C, Scheurell MD, Valero JL (2003) State of the world’s fisheries. Annu Rev Environ Resour 28:359–399. doi: 10.1146/annurev.energy.28.050302.105509 CrossRefGoogle Scholar
  37. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi: 10.1126/science.1059199 CrossRefGoogle Scholar
  38. Lloret J, Lleonart J, Solé I, Fromentin J-M (2001) Fluctuations of landings and environmental conditions in the north-western Mediterranean Sea. Fish Oceanogr 10:33–50. doi: 10.1046/j.1365-2419.2001.00151.x CrossRefGoogle Scholar
  39. Lopes PFM (2008) Extracted and farmed shrimp fisheries in Brazil: economic, environmental and social consequences of exploitation. Environ Dev Sustain 10:639–655CrossRefGoogle Scholar
  40. Madrid-Vera J, Amezcua F, Morales-Bojórquez E (2007) An assessment approach to estimate biomass of fish communities from bycatch data in a tropical shrimp-trawl fishery. Fish Res 83:81–89. doi: 10.1016/j.fishres.2006.08.026 CrossRefGoogle Scholar
  41. Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante J, Tavares P (2011) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38:1829–1848. doi: 10.1007/s00382-011-1155-5 CrossRefGoogle Scholar
  42. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283. doi: 10.1038/nature01610 CrossRefGoogle Scholar
  43. Ortega L, Celentano E, Delgado E, Defeo O (2016) Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Mar Ecol Prog Ser 545:203–213. doi: 10.3354/meps11643 CrossRefGoogle Scholar
  44. Otero J, Álvarez-Salgado X, González AF, Miranda A, Groom SB, Cabanas JM, Casas G, Wheatley B, Guerra A (2008) Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Mar Ecol Prog Ser 362:181–192. doi: 10.3354/meps07437 CrossRefGoogle Scholar
  45. Pantaleão JAF, Carvalho-Batista A, Fransozo A, da Costa RC (2016) The influence of upwelling on the diversity and distribution of marine shrimp (Penaeoidea and Caridea) in two tropical coastal areas of southeastern Brazil. Hydrobiologia 763:381–395. doi: 10.1007/s10750-015-2429-4 CrossRefGoogle Scholar
  46. Pauly D, Christensen V, Dalsgaard J, Froese R, Francisco T (1998) Fishing down marine food webs. Science 279:860–863. doi: 10.1126/science.279.5352.860 CrossRefGoogle Scholar
  47. Pauly D, Hilborn R, Branch TA (2013) Fisheries: does catch reflect abundance? Nature 494:303–306. doi: 10.1038/494303a CrossRefGoogle Scholar
  48. Pennino MG, Thomé-Souza MJF, Carvalho AR, Fontes LCS, Parente C, Lopes PFM (2016) A spatial multivariate approach to understand what controls species catch composition in small-scale fisheries. Fish Res 175:132–141. doi: 10.1016/j.fishres.2015.11.028 CrossRefGoogle Scholar
  49. Pérez-Castañeda R, Defeo O (2005) Growth and mortality of transient shrimp populations (Farfantepenaeus spp.) in a coastal lagoon of Mexico: role of the environment and density-dependence. ICES J Mar Sci J Cons 62:14–24. doi: 10.1016/j.icesjms.2004.10.005 CrossRefGoogle Scholar
  50. Pérez-Jar L, Ramos Trujillo L (2010) Desempeño reproductivo de Litopenaeus schmitti de cultivo en condiciones comerciales. Revista cubana de investigaciones pesqueras 27:14–20Google Scholar
  51. Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Bris AL, Mills KE, Nye JA, Record NR, Scannell HA, Sherwood GD, Thomas AC (2015) Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–812. doi: 10.1126/science.aac9819 CrossRefGoogle Scholar
  52. Pinnegar JK, Hutton TP, Placenti V (2006) What relative seafood prices can tell us about the status of stocks. Fish Fish 7:219–226. doi: 10.1111/j.1467-2979.2006.00219.x CrossRefGoogle Scholar
  53. Development Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  54. Ravier C, Fromentin J-M (2001) Long-term fluctuations in the eastern Atlantic and Mediterranean bluefin tuna population. ICES J Mar Sci J Cons 58:1299–1317. doi: 10.1006/jmsc.2001.1119 CrossRefGoogle Scholar
  55. Russell BD, Thompson J-AI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol 15:2153–2162. doi: 10.1111/j.1365-2486.2009.01886.x CrossRefGoogle Scholar
  56. Santos MB, González-Quirós R, Riveiro I, Cabanas JM, Porteiro C, Pierce GJ (2012) Cycles, trends, and residual variation in the Iberian sardine (Sardina pilchardus) recruitment series and their relationship with the environment. ICES J Mar Sci 69:739–750CrossRefGoogle Scholar
  57. Santos MCF, Ivo CTC (2000) Pesca, biologia e dinâmica populacional do camarão sete-barbas, Xiphopenaeus kroyeri (Heller, 1862) (Crustacea: Decapoda: Penaeidae), capturado em frente ao município de Caravelas (Bahia- Brasil). Bol Tec Cient CEPENE 8:131–164Google Scholar
  58. Silva ACC, Castilhos JC, Santos EAP, Brondízio LS, Bugoni L (2010) Efforts to reduce sea turtle bycatch in the shrimp fishery in Northeastern Brazil through a co-management process. Ocean Coast Manag 53:570–576. doi: 10.1016/j.ocecoaman.2010.06.016 CrossRefGoogle Scholar
  59. Simões SM, Costa RC, Fransozo A, Castilho AL (2010) Diel variation in abundance and size of the seabob shrimp Xiphopenaeus kroyeri (Crustacea, Penaeoidea) in the Ubatuba region, Southeastern Brazil. An Acad Bras Ciênc 82:369–378. doi: 10.1590/S0001-37652010000200013 CrossRefGoogle Scholar
  60. Simpson AW, Watling L (2006) An investigation of the cumulative impacts of shrimp trawling on mud-bottom fishing grounds in the Gulf of Maine: effects on habitat and macrofaunal community structure. ICES J Mar Sci 63:1616–1630CrossRefGoogle Scholar
  61. Sobrino I, Juarez A, Rey J, Romero Z, Baro J (2011) Description of the clay pot fishery in the Gulf of Cadiz (SW Spain) for Octopus vulgaris: selectivity and exploitation pattern. Fish Res 108:283–290. doi: 10.1016/j.fishres.2010.12.022 CrossRefGoogle Scholar
  62. Sonderblohm CP, Pereira J, Erzini K (2014) Environmental and fishery-driven dynamics of the common octopus (Octopus vulgaris) based on time-series analyses from leeward Algarve, southern Portugal. ICES J Mar Sci 71:2231–2241. doi: 10.1093/icesjms/fst189 CrossRefGoogle Scholar
  63. Stoner AW, Zimmerman RJ (1988) Food pathways associated with penaeid shrimps in a mangrove-fringed estuary. Fish Bull 86:543–551Google Scholar
  64. Sumaila UR, Lam VWY (2015) Out of stock: the impact of climate change on British Columbia’s staple seafood supply and prices. Vancity, VancouverGoogle Scholar
  65. Sumaila UR, Marsden AD, Watson R, Pauly D (2007) A global ex-vessel fish price database: construction and applications. J Bioecon 9:39–51. doi: 10.1007/s10818-007-9015-4 CrossRefGoogle Scholar
  66. Swartzman LC, Gwadry FG, Shapiro AP, Teasell RW (1994) The factor structure of the coping strategies questionnaire. Pain 57:311–316CrossRefGoogle Scholar
  67. Sydeman WJ, Poloczanska E, Reed TE, Thompson SA (2015) Climate change and marine vertebrates. Science 350:772–777. doi: 10.1126/science.aac9874 CrossRefGoogle Scholar
  68. Teh LSL, Teh LCL, Sumaila UR (2011) Quantifying the overlooked socio-economic contribution of small-scale fisheries in Sabah, Malaysia. Fish Res 110:450–458. doi: 10.1016/j.fishres.2011.06.001 CrossRefGoogle Scholar
  69. Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, New YorkGoogle Scholar
  70. Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177. doi: 10.1016/S0304-3800(02)00193-X CrossRefGoogle Scholar
  71. Ye Y (2000) Is recruitment related to spawning stock in penaeid shrimp fisheries? ICES J Mar Sci J Cons 57:1103–1109. doi: 10.1006/jmsc.2000.0706 CrossRefGoogle Scholar
  72. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Priscila F. M. Lopes
    • 1
    • 2
  • Maria Grazia Pennino
    • 1
    • 3
  • Fúlvio Freire
    • 4
  1. 1.Fisheries Ecology, Management and Economics Unit (FEME)NatalBrazil
  2. 2.Department of EcologyFederal University of Rio Grande do NorteNatalBrazil
  3. 3.Instituto Español de Oceanografía, Centro Oceanográfico de MurciaMurciaSpain
  4. 4.Department of Botany and ZoologyFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations