Automated dilemmas generation in simulations

  • Azzeddine BenabbouEmail author
  • Domitile Lourdeaux
  • Dominique Lenne
Original Article


Our ultimate purpose is to train individuals, in virtual environments, to handle critical situations. One of these critical situations is dilemmas. They refer to situations that lead to negative consequences whichever is the choice made by the protagonist. In critical contexts, it is crucial to know how to handle this kind of situations to prevent disastrous consequences from happening. Thus, people need to be exposed to various training situations in which they put in play and develop the appropriate skills. However, in complex domains, it is difficult—sometimes impossible—to write all the possible training scenarios. To address this problem, an automated generation approach is considered. In this article, we present KOBA, a scenario engine that automatically generates dilemma situations without having to write them beforehand. This engine uses knowledge models to extract the necessary properties for dilemmas to emerge. In this article, we present this approach and expose a proof of concept of the generation process.


Scenario generation Virtual environment Knowledge models Dilemmas 



  1. Amokrane K (2010) Suivi de l’apprenant en environnement virtuel pour la formation à la prévention des risques sur des sites {SEVESO}. Université de Technologie de CompiègneGoogle Scholar
  2. Badawi M, Donikian S (2004) Autonomous agents interacting with their virtual environments through synoptic objects. In: Proceedings of {CASA} 2004, pp 179–187, 23 Sept 2013.
  3. Baker D et al (1993) Aviation computer games for crew resource management training. Int J Aviat Psychol 3(2):143–156. Feb 2018) MathSciNetCrossRefGoogle Scholar
  4. Barber H, Kudenko D (2007) A user model for the generation of dilemma-based interactive narratives. In: Papers from the 2007 AIIDE Workshop, Optimizing Player Satisfaction, pp 13–18Google Scholar
  5. Barot C (2014) Scénarisation d’environnements Virtuels. Vers Un Équilibre Entre Contrôle, Cohérence et Adaptabilité. Université de technologie de CompiègneGoogle Scholar
  6. Benabbou A, Lourdeaux D, Lenne D (2018) Towards generation of ambiguous situations in virtual environments for training. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Cham, pp 631–335, 4 Dec 2018. CrossRefGoogle Scholar
  7. Bille W et al (2004) Using ontologies to build virtual worlds for the web. In: ICWI, pp 683–690, 31 July 2014.
  8. Bonnefon JF, Shariff A, Rahwan I (2016) The social dilemma of autonomous vehicles. Science 352(6293):1573–76. (17 Mar 2018)CrossRefGoogle Scholar
  9. Bourrier Y, Jambon F, Garbay C, Luengo V (2017) A multi-layered architecture for analysis of non-technical-skills in critical situations. (24 May 2018)
  10. Burkhardt JM et al (2016) Simulation and virtual reality-based learning of non-technical skills in driving: critical situations, diagnostic and adaptation. In: IFAC-PapersOnLine, pp 66–71MathSciNetCrossRefGoogle Scholar
  11. Burkhardt JM, Lourdeaux D, Mellet-d’Huart D (2006) La réalité virtuelle pour l’apprentissage humain. G. Moreau (Coord.), B. Arnaldi and P. Guitton (Coords). Le Traité de la réalité virtuelle 4:43–100Google Scholar
  12. Carpentier K (2015) Scénarisation personnalisée dynamique dans les environnements virtuels pour la formation. Université de Technologie de Compiègne. (4 Apr 2017)
  13. Carpentier K, Lourdeaux D, Thouvenin I (2013) Dynamic selection of learning situations in virtual environment. In: Proceedings of {ICAART}’13: International Conference on Agents and Artificial Intelligence, Barcelona, Spain, pp 101–110Google Scholar
  14. Chevaillier P, Querrec R, Septseault C (2009) {VEHA}, Un Métamodèle d’environnement Virtuel Informé et Structuré. Techniques et sciences informatiques 28(6–7): 715–40. (23 Sept 2013)CrossRefGoogle Scholar
  15. Chittaro L, Ranon R (2007) Web3D technologies in learning, education and training: motivations, issues, opportunities. Comput Educ 49(1):3–18. (8 Oct 2018)CrossRefGoogle Scholar
  16. Cooper JB, Long CD, Newbower RS, Philip JH (1982) Critical incidents associated with intraoperative exchanges of anesthesia personnel. Anesthesiology 56(6):456–61. (26 Feb 2018)CrossRefGoogle Scholar
  17. Edward L (2011) Modélisation décisionnelle de personnages virtuels autonomes évoluant dans un environnement pour la présentation des risques sur les sites {SEVESO}. Université de Technologie de CompiègneGoogle Scholar
  18. Flanagan JC (1954) The critical incident technique. Psychol Bull 51(4): 327–58. (18 Jan 2017)CrossRefGoogle Scholar
  19. Flin R, O’Connor P, Crichton M (2008) Safety at the sharp end: a guide to non-technical skills; chapter 2. In: Safety at The Sharp End: A Guide to Non-Technical Skills, pp 17–40Google Scholar
  20. Foot P (1967) The problem of abortion and the doctrine of double effectGoogle Scholar
  21. Gerbaud S et al (2008) {GVT}: a platform to create virtual environments for procedural training. In: {IEEE} Virtual Reality, Reno, États-Unis, pp 225–232.
  22. Goel V (1995) Sketches of thought. MIt Press, CambridgeGoogle Scholar
  23. Greene JD et al (2001) An FMRI investigation of emotional engagement in moral judgment. Science (New York, N.Y.) 293(5537):2105–8. CrossRefGoogle Scholar
  24. Harmon S (2016) An expressive dilemma generation model for players and artificial agents. In: The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16), pp 176–182Google Scholar
  25. Hauser M et al (2007) A dissociation between moral judgments and justications. Mind Lang 22(1):1–21MathSciNetCrossRefGoogle Scholar
  26. Helmreich RL (2000) On error management: lessons from aviation. BMJ (Clin Res Ed) 320(7237):781–785. (26 Feb 2018)CrossRefGoogle Scholar
  27. Huang HM, Rauch U, Liaw SS (2010) Investigating learners’ attitudes toward virtual reality learning environments: based on a constructivist approach. Comput Educ 55(3):1171–1182. (8 Oct 2018)CrossRefGoogle Scholar
  28. Kallmann M, Thalmann D (1999) Direct 3d interaction with smart objects. In: Proceedings of the {ACM} Symposium on Virtual Reality Software and Technology, pp 124–130Google Scholar
  29. Lave J, Wenger E (1991) Situated learning: legitimate peripheral participation. Cambridge university press. (14 Aug 2014)
  30. Lecomte MA (2006) La formation à l’éthique des étudiants en soins infirmiers (Belgique). Recherche en soins infirmiers 86(3):4.
  31. Likert R (1932) A technique for the measurement of attitudes. In: Archives of Psychology. vol 22, no.140, 1–55Google Scholar
  32. Luengo V (2009) Les rétroactions épistémiques dans les environnement informatique pour l’Apprentissage Humain. Université Joseph Fourier—Grenoble I. internal-pdf://hdr_luengo_retroactionGoogle Scholar
  33. Lugrin JL, Cavazza M (2006) AI-based world behaviour for emergent narratives. In: International Conference on Advances in Computer Entertainment Technology 2006Google Scholar
  34. Navarrete CD, McDonald MM, Mott ML, Asher B (2012) Virtual morality: emotion and action in a simulated three-dimensional ‘trolley problem’. Emotion (Washington, D.C.) 12(2):364–370. CrossRefGoogle Scholar
  35. Newbower RS, Cooper JB, Long CD (1981) Learning from anesthesia mishaps: analysis of critical incidents in anesthesia helps reduce patient risk. QRB. Qual Rev Bull 7(3):10–16. (26 Feb 2018)
  36. Piaget J (1948) La naissance de l’intelligence chez l’enfant. Delachaux et NiestléGoogle Scholar
  37. Reznek M, Harter P, Krummel T (2002) Virtual reality and simulation: training the future emergency physician. Acad Emerg Med 9(1):78–87. (17 Feb 2018)CrossRefGoogle Scholar
  38. Rickel J et al (2001) Steve goes to Bosnia: towards a new generation of virtual humans for interactive experiencesGoogle Scholar
  39. Rouillé M et al (2008) Prototype du langage de modélisation de l’activité humaineGoogle Scholar
  40. Schwartz SH (2017) The refined theory of basic values. In: Values and Behavior: Taking a Cross Cultural Perspective, Springer International Publishing, Cham, pp 51–72. (4 Feb 2019)CrossRefGoogle Scholar
  41. Scott E, Soria A, Campo M (2017)) Adaptive 3D virtual learning environments—a review of the literature. In: IEEE Trans Learn Technol 10(3):262–76. (4 July 2019)CrossRefGoogle Scholar
  42. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, PrincetonzbMATHGoogle Scholar
  43. Skulmowski A, Bunge A, Kaspar K, Pipa G (2014) Forced-choice decision-making in modified trolley dilemma situations: a virtual reality and eye tracking study. Front Behav Neurosci 8:426.
  44. Spierling U, Szilas N (2009) Authoring issues beyond tools. In: Iurgel IA, Zagalo N, Petta P (eds) Interactive storytelling. ICIDS 2009. Lecture notes in computer science, vol 5915, Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  45. Sütfeld LR, Gast R, König P, Pipa G (2017) Using virtual reality to assess ethical decisions in road traffic scenarios: applicability of value-of-life-based models and influences of time pressure. Front Behav Neurosci 11:122. (29 Sept 2017)
  46. Tardif J, Meirieu P (1996) Stratégie pour favoriser le transfert des connaissances. Vie pédagogique 98(7):4–7Google Scholar
  47. Valdesolo P, Desteno D (2006) Manipulations of emotional context shape moral judgment. Psychol Sci 17(6):476–477CrossRefGoogle Scholar
  48. Vallentyne P (1989) Two types of moral dilemmas. Erkenntnis (1975) 30:301–318. (29 June 2017)MathSciNetCrossRefGoogle Scholar
  49. Vanderhaegen F (2016) A rule-based support system for dissonance discovery and control applied to car driving. Expert Syst Appl 65:361–371. (12 Mar 2018)CrossRefGoogle Scholar
  50. Vanderhaegen F, Carsten O (2017) Can dissonance engineering improve risk analysis of human–machine systems? Cogn Technol Work 19(1):1–12. CrossRefGoogle Scholar
  51. Vygotsky LS (1978) Mind in society. Harvard University Press, CambridgeGoogle Scholar
  52. Walker WE, Jordan J, Stuart A (2011) Training and learning for crisis management using a virtual simulation/gaming environment. Cogn Technol Work 13(3):163–173CrossRefGoogle Scholar
  53. Westrum, R (2006) A typology of resilience situations. In: Hollnagel E, Woods DD, Leveson N (eds) Resilience engineerng: concepts and precepts. Ashgate, Aldershot, pp 55–66Google Scholar
  54. Wilcoxon Frank (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  1. 1.CNRS, UMR 7253 HeudiasycUniversité de Technologie de CompiègneCompiègne CedexFrance

Personalised recommendations