Advertisement

Design for assembly meaning: a framework for designers to design products that support operator cognition during the assembly process

  • Davy D. ParmentierEmail author
  • Bram B. Van Acker
  • Jan Detand
  • Jelle Saldien
Original Article
  • 10 Downloads

Abstract

Designing assembly instructions is mostly considered to be a non-designer task. Hence, in many companies, it is performed by production planners or instructional designers. However, analysing product components and looking for clues on how these components can be fitted together into a subassembly or final product is a fundamental part of assembly. Product designers play an important role in the way these components are perceived by the operator. This paper discusses the need and importance of a new approach to product design focused on how the assembly design can promote meaning to the operator, supporting operator cognition. The aim of this approach was to guide assembly operators more intuitively through their increasingly complex tasks. Doing so will allow them to avoid some of the major drawbacks that are present when using procedural instructions. Hence, this approach has the potential to decrease cognitive load and frustration, and increase mental wellbeing, work motivation and efficiency. As a first step towards this new approach, a conceptual framework is constructed, and insights are formulated after reviewing various design theories and concepts of design for meaning on their potential in a context of manual assembly.

Keywords

Product design Manual assembly Meaning Cognition 

Notes

References

  1. Agrawala M, Phan D, Heiser J et al (2003) Designing effective step-by-step assembly instructions. ACM Trans Graph 22:828–837.  https://doi.org/10.1145/882262.882352 CrossRefGoogle Scholar
  2. Baber C, Parekh M, Cengiz TG (2014) Tool use as distributed cognition: how tools help, hinder and define manual skill. Front Psychol 5:1–14.  https://doi.org/10.3389/fpsyg.2014.00116 CrossRefGoogle Scholar
  3. Bley H, Reinhart G, Seliger G et al (2004) Appropriate human involvement in assembly and disassembly. CIRP Ann Technol 53:487–509.  https://doi.org/10.1016/s0007-8506(07)60026-2 CrossRefGoogle Scholar
  4. Boess S, Kanis H (2008) Meaning in product use: a design perspective. In: Schifferstein HNJ, Hekkert P (eds) Product experience. Elsevier, New York, pp 305–332.  https://doi.org/10.1016/B978-008045089-6.50015-0 CrossRefGoogle Scholar
  5. Booker JD, Swift KG, Brown NJ (2005) Designing for assembly quality: strategies, guidelines and techniques. J Eng Des 16:279–295.  https://doi.org/10.1080/09544820500126672 CrossRefGoogle Scholar
  6. Boothroyd G (1994) Product design for manufacture and assembly. Comput Des 26:505–520.  https://doi.org/10.1016/0010-4485(94)90082-5 Google Scholar
  7. Brolin A, Thorvald P, Case K (2017) Experimental study of cognitive aspects affecting human performance in manual assembly. Prod Manuf Res 5:141–163.  https://doi.org/10.1080/21693277.2017.1374893 Google Scholar
  8. Carroll JM (1990) The Nurnberg funnel: designing minimalist instruction for practical computer skill. MIT Press, CambridgeGoogle Scholar
  9. Castro-Alonso JC, Ayres P, Paas F (2016) Comparing apples and oranges? A critical look at research on learning from statics versus animations. Comput Educ 102:234–243.  https://doi.org/10.1016/j.compedu.2016.09.004 CrossRefGoogle Scholar
  10. Chandler P, Sweller J (1991) Cognitive load theory and the format of instruction. Cogn Instr 8:293–332.  https://doi.org/10.1207/s1532690xci0804_2 CrossRefGoogle Scholar
  11. Chandler P, Sweller J (1992) The split-attention effect as a factor in the design of instruction. Br J Educ Psychol 62:233–246.  https://doi.org/10.1111/j.2044-8279.1992.tb01017.x CrossRefGoogle Scholar
  12. Chandler P, Sweller J (1996) Cognitive load while learning to use a computer program. Appl Cogn Psychol 10:151–170.  https://doi.org/10.1002/(sici)1099-0720(199604)10:2%3c151:aid-acp380%3e3.0.co;2-u CrossRefGoogle Scholar
  13. Claeys A, Hoedt S, Soete N et al (2015) Framework for evaluating cognitive support in mixed model assembly systems. IFAC-PapersOnLine 48:924–929.  https://doi.org/10.1016/j.ifacol.2015.06.201 CrossRefGoogle Scholar
  14. Cormier P, Olewnik A (2014) Toward a formalization of affordance modeling for engineering design. Res Eng Des 25:259–277.  https://doi.org/10.1007/s00163-014-0179-3 CrossRefGoogle Scholar
  15. Crilly N, Maier A, Clarkson PJ (2008) Representing artefacts as media: modelling the relationship between designer intent and consumer experience. Int J Des 2:15–27Google Scholar
  16. Dadashi N, Golightly D, Sharples S (2017) Seeing the woods for the trees: the problem of information inefficiency and information overload on operator performance. Cogn Technol Work 19:561–570.  https://doi.org/10.1007/s10111-017-0451-1 CrossRefGoogle Scholar
  17. Desmet PMA, Hekkert P (2002) The Basis of Product Emotions. In: Green W, Jordan P (eds) Pleasure with products, beyond usability. Taylor and Francis, London, pp 60–68Google Scholar
  18. Eiriksdottir E, Catrambone R (2011) Procedural instructions, principles, and examples: how to structure instructions for procedural tasks to enhance performance, learning, and transfer. Hum Factors 53:749–770.  https://doi.org/10.1177/0018720811419154 CrossRefGoogle Scholar
  19. Elmaraghy W, Elmaraghy H, Tomiyama T, Monostori L (2012) Complexity in engineering design and manufacturing. CIRP Ann Manuf Technol 61:793–814.  https://doi.org/10.1016/j.cirp.2012.05.001 CrossRefGoogle Scholar
  20. Erol S, Jäger A, Hold P et al (2016) Tangible industry 4.0: a scenario-based approach to learning for the future of production. Proc CIRP 54:13–18.  https://doi.org/10.1016/j.procir.2016.03.162 CrossRefGoogle Scholar
  21. Fast-Berglund Å, Fässberg T, Hellman F et al (2013) Relations between complexity, quality and cognitive automation in mixed-model assembly. J Manuf Syst 32:449–455.  https://doi.org/10.1016/j.jmsy.2013.04.011 CrossRefGoogle Scholar
  22. Fu W, Gray WD (2006) Suboptimal tradeoffs in information seeking. Cogn Psychol 52:195–242.  https://doi.org/10.1016/j.cogpsych.2005.08.002 CrossRefGoogle Scholar
  23. Ganier F (2004) Factors affecting the processing of procedural instructions: implications for document design. IEEE Trans Prof Commun 47:15–26.  https://doi.org/10.1109/tpc.2004.824289 CrossRefGoogle Scholar
  24. Ganier F, De Vries P (2016) Are instructions in video format always better than photographs when learning manual techniques? The case of learning how to do sutures. Learn Instr 44:87–96.  https://doi.org/10.1016/j.learninstruc.2016.03.004 CrossRefGoogle Scholar
  25. Gaver W (1991) Technology affordances. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM.  https://doi.org/10.1145/108844.108856
  26. Gibson JJ (1979) The ecological approach to visual perception. Houghton Miffin, BostonGoogle Scholar
  27. Ginns P (2006) Integrating information: a meta-analysis of the spatial contiguity and temporal contiguity effects. Learn Instr 16:511–525.  https://doi.org/10.1016/j.learninstruc.2006.10.001 CrossRefGoogle Scholar
  28. Heiser J, Phan D, Agrawala M, et al (2004) Identification and validation of cognitive design principles for automated generation of assembly instructions. In: Proceedings of the working conference on advanced visual interfaces. ACM, pp 311–319Google Scholar
  29. Hekkert P, Cila N (2015) Handle with care! Why and how designers make use of product metaphors. Des Stud 40:196–217.  https://doi.org/10.1016/j.destud.2015.06.007 CrossRefGoogle Scholar
  30. Höffler TN, Leutner D (2007) Instructional animation versus static pictures: a meta-analysis. Learn Instr 17:722–738.  https://doi.org/10.1016/j.learninstruc.2007.09.013 CrossRefGoogle Scholar
  31. Hollnagel E (2012) Coping with complexity: past, present and future. Cogn Technol Work Work 14:199–205.  https://doi.org/10.1007/s10111-011-0202-7 CrossRefGoogle Scholar
  32. Hu SJ, Zhu X, Wang H, Koren Y (2008) Product variety and manufacturing complexity in assembly systems and supply chains. CIRP Ann Manuf Technol 57:45–48.  https://doi.org/10.1016/j.cirp.2008.03.138 CrossRefGoogle Scholar
  33. Huff M, Bauhoff V, Schwan S (2012) Effects of split attention revisited: a new display technology for troubleshooting tasks. Comput Hum Behav 28:1254–1261.  https://doi.org/10.1016/j.chb.2012.02.008 CrossRefGoogle Scholar
  34. Johansson PEC, Enofe MO, Schwarzkopf M et al (2017a) Data and information handling in assembly information systems—a current state analysis. Proc Manuf 11:2099–2106.  https://doi.org/10.1016/j.promfg.2017.07.335 Google Scholar
  35. Johansson PEC, Eriksson G, Johansson P et al (2017b) Assessment based information needs in manual assembly. In: DEStech transactions on engineering and technology research (Icpr), pp 366–371Google Scholar
  36. Judge TA, Heller D, Mount MK (2002) Five-factor model of personality and job satisfaction: a meta-analysis. J Appl Psychol 87:530–541.  https://doi.org/10.1037//0021-9010.87.3.530 CrossRefGoogle Scholar
  37. Kalyuga S, Chandler P, Sweller J (1998) Levels of expertise and instructional design. Hum Factors 40:1–17.  https://doi.org/10.1518/001872098779480587 CrossRefGoogle Scholar
  38. Kalyuga S, Chandler P, Sweller J (2004) When redundant on-screen text in multimedia technical instruction can interfere with learning. Hum Factors J Hum Factors Ergon Soc 46:567–581.  https://doi.org/10.1518/hfes.46.3.567.1640 CrossRefGoogle Scholar
  39. Kapkin E (2015) Meaning attribution model of product forms: a holistic approach. North Carolina State University, North CarolinaGoogle Scholar
  40. Kirsh D (1995) The intelligent use of space. Artif Intell 73:31–68.  https://doi.org/10.1016/0004-3702(94)00017-U CrossRefGoogle Scholar
  41. Klein G (2008) Naturalistic decision making. Hum Factors 50:456–460.  https://doi.org/10.1518/001872008x288385 CrossRefGoogle Scholar
  42. Knapheide C (2000) Synergy and subsidiarity: the systematic determination of software, user, and operating instructions. Int J Hum Comput Interact 12:415–430.  https://doi.org/10.1080/10447318.2000.9669068 CrossRefGoogle Scholar
  43. Krippendorff K (1989) On the essential contexts of artifacts or on the proposition that “design is making sense (of things)”. Des Issues 5:9–39.  https://doi.org/10.2307/1511512 CrossRefGoogle Scholar
  44. Krippendorff K, Butter R (1984) Product semantics: exploring the symbolic qualities of form. Innovation 3(2):4–9Google Scholar
  45. Krippendorff K, Butter R (1993) Where meanings escape functions. Des Manag J 4:30–37.  https://doi.org/10.1111/j.1948-7169.1993.tb00134.x Google Scholar
  46. Krippendorff K, Butter R (2008) Semantics: meanings and contexts of artifacts. In: Schifferstein HNJ, Hekkert P (eds) Product experience. Elsevier, New York, pp 353–376.  https://doi.org/10.1016/B978-008045089-6.50017-4 CrossRefGoogle Scholar
  47. Kroes P (2002) Design methodology and the nature of technical artefacts. Des Stud 23:287–302.  https://doi.org/10.1016/s0142-694x(01)00039-4 CrossRefGoogle Scholar
  48. Loch F, Quint F, Brishtel I (2016) Comparing video and augmented reality assistance in manual assembly. In: Proceedings—12th international conference on intelligent environments, IE 2016, pp 147–150Google Scholar
  49. Longo F, Nicoletti L, Padovano A (2017) Smart operators in industry 4.0: a human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput Ind Eng 113:144–159.  https://doi.org/10.1016/j.cie.2017.09.016 CrossRefGoogle Scholar
  50. Lu J, Cheng L (2013) Perceiving and interacting affordances: a new model of human–affordance interactions. Integr Psychol Behav Sci 47:142–155.  https://doi.org/10.1007/s12124-012-9202-2 CrossRefGoogle Scholar
  51. Maier JRA, Fadel GM (2009) Affordance based design: a relational theory for design. Res Eng Des 20:13–27.  https://doi.org/10.1007/s00163-008-0060-3 CrossRefGoogle Scholar
  52. Matthews G, Campbell SE, Falconer S et al (2002) Fundamental dimensions of subjective state in performance settings: task engagement, distress, and worry. Emotion 2:315–340.  https://doi.org/10.1037//1528-3542.2.4.315 CrossRefGoogle Scholar
  53. Mattsson S, Fast-Berglund A (2016) How to support intuition in complex assembly? Proc CIRP 50:624–628.  https://doi.org/10.1016/j.procir.2016.05.014 CrossRefGoogle Scholar
  54. Mattsson S, Karlsson M, Fast-Berglund Å, Hansson I (2014) Managing production complexity by empowering workers: six cases. In: Procedia CIRP. Elsevier B.V., pp 212–217.  https://doi.org/10.1016/j.procir.2014.02.041
  55. Mattsson S, Fasth Berglund Å, Li D, Thorvald P (2018) Forming a cognitive automation strategy for Operator 4.0 in complex assembly. Comput Ind Eng.  https://doi.org/10.1016/j.cie.2018.08.011 Google Scholar
  56. McGrath JE (1976) Stress and behavior in organizations. In: Dunnette, Marvin D (eds) Handbook of industrial and organizational psychology. Rand McNally & Co, Chicago, pp 1351–1396Google Scholar
  57. Mowday RT, Porter LW, Steers RM (2013) Employee—organization linkages: the psychology of commitment, absenteeism, and turnover. Academic Press, CambridgeGoogle Scholar
  58. Norman D (1988) The psychology of everyday things. Basic books, New YorkGoogle Scholar
  59. Norman D (1999) Affordance, conventions, and design. Interactions 6:38–43.  https://doi.org/10.1145/301153.301168 CrossRefGoogle Scholar
  60. Osiurak F, Badets A (2016) Tool use and affordance: manipulation-based versus reasoning-based approaches. Psychol Rev 123:534–568.  https://doi.org/10.1037/rev0000027 CrossRefGoogle Scholar
  61. Parmentier DD, Detand J, Saldien J (2019) Designing products with a focus on self-explanatory assembly, a case study. In: Proceedings of the 22nd international conference on engineering design (ICED19), pp 2081–2090.  https://doi.org/10.1017/dsi.2019.214
  62. Pine BJ (1993) Mass customization: the new frontier in business competition. Harvard Business School Press, BostonGoogle Scholar
  63. Pols AJK (2012) Characterising affordances: the descriptions-of-affordances-model. Des Stud 33:113–125.  https://doi.org/10.1016/j.destud.2011.07.007 CrossRefGoogle Scholar
  64. Radkowski R, Herrema J, Oliver J (2015) Augmented reality-based manual assembly support with visual features for different degrees of difficulty. Int J Hum Comput Interact 31:337–349.  https://doi.org/10.1080/10447318.2014.994194 CrossRefGoogle Scholar
  65. Rasmussen J (2000) Human factors in a dynamic information society: where are we heading? Ergonomics 43:869–879.  https://doi.org/10.1080/001401300409071 CrossRefGoogle Scholar
  66. Re GM, Oliver J, Bordegoni M (2016) Impact of monitor-based augmented reality for on-site industrial manual operations. Cogn Technol Work 18:379–392.  https://doi.org/10.1007/s10111-016-0365-3 CrossRefGoogle Scholar
  67. Redström J, Grauers H (2006) Towards user design? On the shift from object to user as the subject of design. Des Stud 27:123–139.  https://doi.org/10.1016/j.destud.2005.06.001 CrossRefGoogle Scholar
  68. Rettig M (1991) Nobody reads documentation. Commun ACM 34:19–24.  https://doi.org/10.1145/105783.105788 CrossRefGoogle Scholar
  69. Ryan RM, Deci EL (2000) Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol 55:68–78.  https://doi.org/10.1037//0003-066x.55.1.68 CrossRefGoogle Scholar
  70. Schuh G, Anderl R, Gausemeier J, ten Hompel M, Wahlster W (eds) (2017) Industrie 4.0 Maturity Index. Managing the digital transformation of companies (acatech STUDY), Herbert Utz Verlag, MunichGoogle Scholar
  71. Schumacher P (2007) Creating effective illustrations for pictorial assembly instructions. Inf Des J 15:97–109.  https://doi.org/10.1075/idj.15.2.01sch Google Scholar
  72. Schumacher P (2013) A pattern language for pictorial assembly instructions (PAIs). Inf Des J 20:111–135.  https://doi.org/10.1075/idj.20.2.03sch Google Scholar
  73. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanazbMATHGoogle Scholar
  74. Siu KWM (2003) Users’ creative responses and designers’ roles. Des Issues 19:64–73.  https://doi.org/10.1162/074793603765201424 CrossRefGoogle Scholar
  75. Stoffregen TA, Mantel B (2015) Exploratory movement and affordances in design. Artif Intell Eng Des Anal Manuf 29:257–265.  https://doi.org/10.1017/s0890060415000190 CrossRefGoogle Scholar
  76. Stork S, Schubö A (2010) Human cognition in manual assembly: theories and applications. Adv Eng Inform 24:320–328.  https://doi.org/10.1016/j.aei.2010.05.010 CrossRefGoogle Scholar
  77. Sweller J, van Merrienboer JJG, Paas FG (1998) Cognitive architecture and instructional design. Educ Psychol Rev 10:251–296.  https://doi.org/10.1023/a:1022193728205 CrossRefGoogle Scholar
  78. Syberfeldt A, Danielsson O, Holm M, Wang L (2015) Visual assembling guidance using augmented reality. Proc Manuf 1:98–109.  https://doi.org/10.1016/j.promfg.2015.09.068 Google Scholar
  79. Um J, Lyons A, Lam HKS et al (2017) Product variety management and supply chain performance: a capability perspective on their relationships and competitiveness implications. Int J Prod Econ 187:15–26.  https://doi.org/10.1016/j.ijpe.2017.02.005 CrossRefGoogle Scholar
  80. Van Acker BB, Parmentier DD, Vlerick P, Saldien J (2018) Understanding mental workload: from a clarifying concept analysis toward an implementable framework. Cogn Technol Work 20:351–365.  https://doi.org/10.1007/s10111-018-0481-3 CrossRefGoogle Scholar
  81. Vanderhaegen F, Carsten O (2017) Can dissonance engineering improve risk analysis of human–machine systems? Cogn Technol Work 19:1–12.  https://doi.org/10.1007/s10111-017-0405-7 CrossRefGoogle Scholar
  82. Vera D, Crossan M, Rerup C, Werner S (2014) “Thinking before acting” or “acting before thinking”: antecedents of individual action propensity in work situations. J Manag Stud 51:603–633.  https://doi.org/10.1111/joms.12075 CrossRefGoogle Scholar
  83. Vicente KJ (1999) Cognitive work analysis: toward safe, productive, and healthy computer-based work. Lawrence Erlbaum Associates, MahwahGoogle Scholar
  84. Vihma S (1995) Products as representations: a semiotic and aesthetic study of design products, 1st edn. University of Art and Design Helsinki, HelsinkiGoogle Scholar
  85. Wan X, Sanders NR (2017) The negative impact of product variety: forecast bias, inventory levels, and the role of vertical integration. Int J Prod Econ 186:123–131.  https://doi.org/10.1016/j.ijpe.2017.02.002 CrossRefGoogle Scholar
  86. Whittington JL, Meskelis S, Asare E, Beldona S (2017) Creating meaning in work through job enrichment. Enhancing employee engagement. Palgrave Macmillan, Cham, pp 43–51CrossRefGoogle Scholar
  87. Wieringa D, Moore C, Barnes V (1998) Procedure writing: principles and practices. In: IEEEGoogle Scholar
  88. Wilson JR, Corlett EN (1995) Evaluation of human work: A practical ergonomics methodology, 2nd edn. Taylor & Francis, LondonGoogle Scholar
  89. Wong A, Marcus N, Ayres P et al (2009) Instructional animations can be superior to statics when learning human motor skills. Comput Hum Behav 25:339–347.  https://doi.org/10.1016/j.chb.2008.12.012 CrossRefGoogle Scholar
  90. You H, Chen K, Kung NC (2007) Applications of affordance and semantics in product design. Des Stud 28:23–38.  https://doi.org/10.1016/j.destud.2006.07.002 CrossRefGoogle Scholar
  91. Young M, Brookhuis K, Wickens C, Hancock P (2015) State of science: mental workload in ergonomics. Ergonomics 58:1–17.  https://doi.org/10.1080/00140139.2014.956151 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial Systems Engineering and Product DesignGhent UniversityKortrijkBelgium
  2. 2.Department of Personnel Management, Work and Organizational PsychologyGhent UniversityGhentBelgium
  3. 3.imec-mict-UGentGhentBelgium

Personalised recommendations