Advertisement

Journal of Geographical Systems

, Volume 21, Issue 2, pp 271–293 | Cite as

Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France

  • François Sémécurbe
  • Cécile TannierEmail author
  • Stéphane G. Roux
Original Article
  • 85 Downloads

Abstract

In the early twentieth century, a handful of French geographers and historians famously suggested that mainland France comprised two agrarian systems: enclosed field systems with scattered settlements in the central and western France and openfield systems with grouped settlements in eastern France. This division between grouped and scattered settlements can still be found on the outskirts of urban areas. The objective of this paper is to determine whether the shape of urban areas varies with the type of built patterns in their periphery. To this end, we identify and characterise the local and global deviations from scale invariance of built patterns in mainland France. For this, we propose a new method—Geographically Weighted Fractal Analysis—that can characterise built patterns at a fine spatial resolution without making any a priori distinction between urban patterns and suburban or rural patterns. By applying GWFA to the spatial distribution of buildings throughout mainland France we identify six geographically consistent types of built patterns that are distinctive in the way buildings are either concentrated or dispersed across scales. The relationship between the local built textures and the global shape of twenty metropolitan areas is then analysed statistically. It is found that the proportion of dispersed (or concentrated) outer suburban built patterns in metropolitan areas is closely related to the distance threshold that marks the morphological limit of their urban areas.

Keywords

Built textures Fractal analysis Suburban fringes Scale invariance Mainland France 

JEL Classifcation

C63 C80 Y80 

Notes

Acknowledgement

The authors would like to thank Armelle Couillet, cartographer at the research laboratory IDEES (Rouen, France), for her help in making maps readable by people with red–green colour blindness.

References

  1. Andersson C (2008) Ontogeny and ontology in complex systems modeling. In: Albeverio S, Andrey D, Giordano P, Vancheri A (eds) The dynamics of complex urban systems: an interdisciplinary approach. Physica-Verlag, Heidelberg, pp 43–58Google Scholar
  2. Batty M, Longley P (1986) The fractal simulation of urban structure. Environ Plan A 18:1143–1179Google Scholar
  3. Batty M, Longley PA (1987) Urban shapes as fractals. Area 19(3):215–221Google Scholar
  4. Batty M, Xie Y (1996) Preliminary evidence for a theory of the fractal city. Environ Plan A 28:1745–1762Google Scholar
  5. Benguigui L, Czamanski D (2004) Simulation analysis of the fractality of cities. Geogr Anal 36(1):69–84Google Scholar
  6. Benguigui L, Czamanski D, Marinov M, Portugali Y (2000) When and where is a city fractal? Environ Plan B Plan Des 27:507–519Google Scholar
  7. Bloch M (1931) Les caractères originaux de l’histoire rurale française. Instituttet for sammenlignende kulturforskning, OsloGoogle Scholar
  8. Brunsdon C, Fotheringham AS, Charlton M (1996) Geographically Weighted Regression: a method for exploring spatial nonstationarity. Geogr Anal 28(4):281–298Google Scholar
  9. Chaudhry O, Mackaness W (2008) Automatic identification of urban settlement boundaries for multiple representation databases. Comput Environ Urban Syst 32:95–109Google Scholar
  10. Chen Y, Wang J (2013) Multifractal characterization of urban form and growth: the case of Beijing. Environ Plan 40(5):884–904Google Scholar
  11. De Keersmaecker M-L, Thomas I, Frankhauser P (2003) Using fractal dimensions for characterizing intra-urban diversity: the example of Brussels. Geogr Anal 35(4):310–328Google Scholar
  12. Demangeon A (1927) La géographie de l’habitat rural. Annales de géographie 36:1–23Google Scholar
  13. Diggle P (1985) A kernel method for smoothing point process data. J Roy Stat Soc Ser C (Appl Stat) 34(2):138–147Google Scholar
  14. Dion R (1934) Essai sur la formation du paysage rural français. Arrault, ToursGoogle Scholar
  15. Feng J, Chen Y (2010) Spatiotemporal evolution of urban form and land-use structure in Hangzhou, China: evidence from fractals. Environ Plann B Plann Des 37(5):838–856Google Scholar
  16. Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically Weighted Regression: the analysis of spatially varying relationships. Wiley, HobokenGoogle Scholar
  17. Frankhauser P (1988) Fractal aspects of urban systems. Sonderforschungsbereich 230 “Natürliche Konstruktionen” 1:67–76Google Scholar
  18. Frankhauser P (1998) The fractal approach: a new tool for the spatial analysis of urban agglomerations. Population 4:205–240Google Scholar
  19. Goodchild M (1980) Fractals and the accuracy of geographical measures. Math Geol 12(2):85–98Google Scholar
  20. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208Google Scholar
  21. Jenny B, Kelso NV (2007) Designing maps for the colour-vision impaired. Bull Soc Cartogr 41:9–12Google Scholar
  22. Lam N (1990) Description and measurement of Landsat TM images using fractals. Photogramm Eng Remote Sens 56(2):187–195Google Scholar
  23. Lam N, Quattrochi D (1992) On the issues of scale, resolution, and fractal analysis in the mapping sciences. Prof Geogr 44(1):88–98Google Scholar
  24. Le Gléau J, Pumain D, Saint-Julien T (1997) Towns of Europe: to each country its definition. INSEE Stud 6:1–14Google Scholar
  25. Longley P, Batty M (1989) On the fractal measurement of geographical boundaries. Geogr Anal 21(1):47–67Google Scholar
  26. Mancebo F, Salles S (2014) De l’autre côté du miroir. Un périurbain pensé par le rural, pour une périurbanisation modelée par les usages. Premier plan Le journal d’informations du PUCA (plan urbanisme construction architecture) 30:4–6Google Scholar
  27. Mandelbrot B (1982) The fractal geometry of nature. Freeman, San FranciscoGoogle Scholar
  28. Sémécurbe F, Tannier C, Roux SG (2016) Spatial distribution of human population in France: exploring the modifiable areal unit problem using multifractal analysis. Geogr Anal 48(3):292–313Google Scholar
  29. Shen G (2002) Fractal dimension and fractal growth of urbanized areas. Int J Geogr Inf Sci 16(5):437–519Google Scholar
  30. Silverman BW (1978) Choosing the window width when estimating a density. Biometrika 65:1–11Google Scholar
  31. Tannier C, Pumain D (2005) Fractals in urban geography: a theoretical outline and an empirical example. Cybergeo Eur J Geogr 307.  https://doi.org/10.4000/cybergeo.3275
  32. Tannier C, Thomas I (2013) Defining and characterizing urban boundaries: a fractal analysis of theoretical cities and Belgian cities. Comput Environ Urban Syst 41:234–248Google Scholar
  33. Tannier C, Thomas I, Vuidel G, Frankhauser P (2011) A fractal approach to identifying urban boundaries. Geogr Anal 43(2):211–227Google Scholar
  34. Tél T, Fülöp Á, Vicsek T (1989) Determination of fractal dimensions for geometrical multifractals. Physica A 159(2):155–166Google Scholar
  35. Thomas I, Frankhauser P, Biernacki C (2008) The morphology of built-up landscapes in Wallonia, Belgium: a classification using fractal indices. Landsc Urban Plan 84:99–115Google Scholar
  36. Thomas I, Frankhauser P, Frenay B, Verleysen M (2010) Clustering patterns of urban built-up areas with curves of fractal scaling behaviour. Environ Plan 37:942–954Google Scholar
  37. Vicsek T (1990) Mass multifractals. Physica A 168(1):490–497Google Scholar
  38. White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plan A 25(8):1175–1199Google Scholar
  39. White R, Engelen G (1994) Urban systems dynamics and cellular automata: fractal structures between order and chaos. Chaos, Solitons Fractals 4(4):563–583Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ThéMA, UMR 6049, CNRS-Univ. Bourgogne Franche-ComtéBesançon CedexFrance
  2. 2.Laboratoire de PhysiqueUMR 5672, CNRS-Ecole Nationale Supérieure de LyonLyon Cedex 07France

Personalised recommendations