Risk and complexity in scenario optimization
- 146 Downloads
Abstract
Scenario optimization is a broad methodology to perform optimization based on empirical knowledge. One collects previous cases, called “scenarios”, for the set-up in which optimization is being performed, and makes a decision that is optimal for the cases that have been collected. For convex optimization, a solid theory has been developed that provides guarantees of performance, and constraint satisfaction, of the scenario solution. In this paper, we open a new direction of investigation: the risk that a performance is not achieved, or that constraints are violated, is studied jointly with the complexity (as precisely defined in the paper) of the solution. It is shown that the joint probability distribution of risk and complexity is concentrated in such a way that the complexity carries fundamental information to tightly judge the risk. This result is obtained without requiring extra knowledge on the underlying optimization problem than that carried by the scenarios; in particular, no extra knowledge on the distribution by which scenarios are generated is assumed, so that the result is broadly applicable. This deep-seated result unveils a fundamental and general structure of data-driven optimization and suggests practical approaches for risk assessment.
Keywords
Data-driven optimization Scenario approach Stochastic optimization Probabilistic constraintsMathematics Subject Classification
90C15 90C25 62C12Notes
Supplementary material
References
- 1.Alamo, T., Tempo, R., Camacho, E.: A randomized strategy for probabilistic solutions of uncertain feasibility and optimization problems. IEEE Trans. Autom. Control 54(11), 2545–2559 (2009)zbMATHCrossRefGoogle Scholar
- 2.Baronio, F., Baronio, M., Campi, M., Caré, A., Garatti, S.: Ventricular defribillation: classification with GEM and a roadmap for future investigations. In: Proceedings of the 56th IEEE Conference on Decision and Control. Melbourne, Australia (2017)Google Scholar
- 3.Bayraksan, G., Morton, D.: Assessing solution quality in stochastic programs. Math. Program. 108, 495–514 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Bayraksan, G., Morton, D.: Assessing solution quality in stochastic programs via sampling. In: Oskoorouchi, M. (ed.) Tutorials in Operations Research, pp. 102–122. Informs (2009)Google Scholar
- 5.Ben-Tal, A., Nemirovski, A.: On safe tractable approximations of chance-constrained linear matrix inequalities. Math. Oper. Res. 34(1), 1–25 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Bertsimas, D., Gupta, V., Kallus, N.: Data-driven robust optimization. Math. Program. 167, 235–292 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Bertsimas, D., Gupta, V., Kallus, N.: Robust sample average approximation. Math. Program. 171, 217–282 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Bertsimas, D., Thiele, A.: Robust and data-driven optimization: modern decision-making under uncertainty. In: Tutorials on Operations Research. INFORMS (2006)Google Scholar
- 9.Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
- 10.Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005). https://doi.org/10.1007/s10107-003-0499-y MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Calafiore, G., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. Math. Program. 130(1), 1–22 (2006)MathSciNetzbMATHGoogle Scholar
- 13.Carè, A., Ramponi, F.A., Campi, M.C.: A new classification algorithm with guaranteed sensitivity and specificity for medical applications. IEEE Control Syst. Lett. 2, 393–398 (2018)CrossRefGoogle Scholar
- 14.Campi, M.: Classification with guaranteed probability of error. Mach. Learn. 80, 63–84 (2010)MathSciNetCrossRefGoogle Scholar
- 15.Campi, M., Calafiore, G., Garatti, S.: Interval predictor models: identification and reliability. Automatica 45(2), 382–392 (2009). https://doi.org/10.1016/j.automatica.2008.09.004 MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Campi, M., Carè, A.: Random convex programs with \(l_1\)-regularization: sparsity and generalization. SIAM J. Control Optim. 51(5), 3532–3557 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Campi, M., Garatti, S.: The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008). https://doi.org/10.1137/07069821X MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Campi, M., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148(2), 257–280 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Campi, M., Garatti, S.: Wait-and-judge scenario optimization. Math. Program. 167(1), 155–189 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Campi, M., Garatti, S., Prandini, M.: The scenario approach for systems and control design. Annu. Rev. Control 33(2), 149–157 (2009). https://doi.org/10.1016/j.arcontrol.2009.07.001 CrossRefGoogle Scholar
- 21.Carè, A., Garatti, S., Campi, M.: FAST—fast algorithm for the scenario technique. Oper. Res. 62(3), 662–671 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Carè, A., Garatti, S., Campi, M.: Scenario min-max optimization and the risk of empirical costs. SIAM J. Optim. 25(4), 2061–2080 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Crespo, L., Giesy, D., Kenny, S.: Interval predictor models with a formal characterization of uncertainty and reliability. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), pp. 5991–5996. Los Angeles, CA, USA (2014)Google Scholar
- 24.Crespo, L., Kenny, S., Giesy, D.: Random predictor models for rigorous uncertainty quantification. Int. J. Uncertain. Quantif. 5(5), 469–489 (2015)MathSciNetCrossRefGoogle Scholar
- 25.Crespo, L., Kenny, S., Giesy, D., Norman, R., Blattnig, S.: Application of interval predictor models to space radiation shielding. In: Proceedings of the 18th AIAA Non-Deterministic Approaches Conference. San Diego, CA, USA (2016)Google Scholar
- 26.de Mello, T.H.: Variable-sample methods for stochastic optimization. ACM Trans. Model. Comput. Simul. 13, 108–133 (2003)zbMATHCrossRefGoogle Scholar
- 27.de Mello, T.H., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19(1), 56–85 (2014)MathSciNetGoogle Scholar
- 28.Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 596–612 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Dentcheva, D.: Optimization models with probabilistic constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty. Springer, London (2006)Google Scholar
- 30.Erdogan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math. Program. 107, 37–61 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Esfahani, P., Sutter, T., Lygeros, J.: Performance bounds for the scenario approach and an extension to a class of non-convex programs. IEEE Trans. Autom. Control 60(1), 46–58 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1172-1 CrossRefzbMATHGoogle Scholar
- 33.Fabozzi, F., Kolm, P., Pachamanova, D., Focardi, S.: Robust Portfolio Optimization and Management. Wiley, Hoboken (2010)Google Scholar
- 34.Garatti, S., Campi, M.: Modulating robustness in control design: principles and algorithms. IEEE Control Syst. Mag. 33(2), 36–51 (2013). https://doi.org/10.1109/MCS.2012.2234964 MathSciNetCrossRefGoogle Scholar
- 35.Goh, J., Sim, M.: Distributionally robust optimization and its tractable approximations. Oper. Res. 58, 902–917 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Grammatico, S., Zhang, X., Margellos, K., Goulart, P., Lygeros, J.: A scenario approach for non-convex control design. IEEE Trans. Autom. Control 61(2), 334–345 (2016)MathSciNetzbMATHGoogle Scholar
- 37.Gupta, V.: Near-optimal ambiguity sets for distributionally robust optimization. Manag. Sci. 65(9), 4242–4260 (2019)CrossRefGoogle Scholar
- 38.Hanasusanto, G., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. 151(1), 35–62 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Hong, L., Hu, Z., Liu, G.: Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Trans. Model. Comput. Simul. 24(4), 22:1–22:37 (2014)MathSciNetzbMATHGoogle Scholar
- 40.Hu, Z., Hong, L.: Kullback–Leiber divergence constrained distributionally robust optimization (2013). http://www.optimization-online.org/DB_HTML/2012/11/3677.html
- 41.Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Math. Program. 158(1–2), 291–327 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Lam, H.: Recovering best statistical guarantees via the empirical divergence-based distributionally robust optimization. Oper. Res. 67(4), 1090–1105 (2019)MathSciNetGoogle Scholar
- 43.Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 215–241 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008). https://doi.org/10.1137/070702928 MathSciNetCrossRefzbMATHGoogle Scholar
- 45.Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Mak, W., Morton, D., Wood, R.: Monte Carlo bounding techniques for determing solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Margellos, K., Prandini, M., Lygeros, J.: On the connection between compression learning and scenario based single-stage and cascading optimization problems. IEEE Trans. Autom. Control 60(10), 2716–2721 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Nemirovski, A.: On safe tractable approximations of chance constraints. Eur. J. Oper. Res. 219, 707–718 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006). https://doi.org/10.1137/050622328 MathSciNetCrossRefzbMATHGoogle Scholar
- 50.Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty. Springer, London (2006)Google Scholar
- 51.Pagnoncelli, B., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142(2), 399–416 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Pagnoncelli, B., Reich, D., Campi, M.: Risk-return trade-off with the scenario approach in practice: a case study in portfolio selection. J. Optim. Theory Appl. 155(2), 707–722 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.Pagnoncelli, B., Vanduffel, S.: A provisioning problem with stochastic payments. Eur. J. Oper. Res. 221(2), 445–453 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 54.Pflug, G., Wozabal, D.: Ambiguity in portfolio selection. Quant. Finance 7, 435–442 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 55.Schildbach, G., Fagiano, L., Frei, C., Morari, M.: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica 50(12), 3009–3018 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 56.Schildbach, G., Fagiano, L., Morari, M.: Randomized solutions to convex programs with multiple chance constraints. SIAM J. Optim. 23(4), 2479–2501 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.Shapiro, A.: Monte–Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science. Elsevier, London (2003)Google Scholar
- 58.Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. MPS-SIAM, Philadelphia (2009)zbMATHCrossRefGoogle Scholar
- 59.Shiryaev, A.: Probability. Springer, New York (1996)zbMATHCrossRefGoogle Scholar
- 60.Thiele, A.: Robust stochastic programming with uncertain probabilities. IMA J. Manag. Math. 19(3), 289–321 (2008). https://doi.org/10.1093/imaman/dpm011 MathSciNetCrossRefzbMATHGoogle Scholar
- 61.Van Parys, B., Esfahani, P., Kuhn, D.: From data to decisions: distributionally robust optimization is optimal. (2017). arxiv:1704.04118
- 62.Vayanos, P., Kuhn, D., Rustem, B.: A constraint sampling approach for multistage robust optimization. Automatica 48(3), 459–471 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 63.Welsh, J., Kong, H.: Robust experiment design through randomisation with chance constraints. In: Proceedings of the 18th IFAC World Congress, Milan, Italy (2011)Google Scholar
- 64.Welsh, J., Rojas, C.: A scenario based approach to robust experiment design. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo, France (2009)CrossRefGoogle Scholar
- 65.Wieseman, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62, 1358–1376 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 66.Wozabal, D.: A framework for optimization under ambiguity. Ann. Oper. Res. 193, 21–47 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., Lygeros, J.: On the sample size of random convex programs with structured dependence on the uncertainty. Automatica 60, 182–188 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 68.Zhou, Z., Cogill, R.: Reliable approximations of probability-constrained stochastic linear-quadratic control. Automatica 49(8), 2435–2439 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 69.Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137(1–2), 167–198 (2013)MathSciNetzbMATHCrossRefGoogle Scholar