Advertisement

Optimized Bonferroni approximations of distributionally robust joint chance constraints

  • Weijun Xie
  • Shabbir Ahmed
  • Ruiwei JiangEmail author
Full Length Paper Series B
  • 42 Downloads

Abstract

A distributionally robust joint chance constraint involves a set of uncertain linear inequalities which can be violated up to a given probability threshold \(\epsilon \), over a given family of probability distributions of the uncertain parameters. A conservative approximation of a joint chance constraint, often referred to as a Bonferroni approximation, uses the union bound to approximate the joint chance constraint by a system of single chance constraints, one for each original uncertain constraint, for a fixed choice of violation probabilities of the single chance constraints such that their sum does not exceed \(\epsilon \). It has been shown that, under various settings, a distributionally robust single chance constraint admits a deterministic convex reformulation. Thus the Bonferroni approximation approach can be used to build convex approximations of distributionally robust joint chance constraints. In this paper we consider an optimized version of Bonferroni approximation where the violation probabilities of the individual single chance constraints are design variables rather than fixed a priori. We show that such an optimized Bonferroni approximation of a distributionally robust joint chance constraint is exact when the uncertainties are separable across the individual inequalities, i.e., each uncertain constraint involves a different set of uncertain parameters and corresponding distribution families. Unfortunately, the optimized Bonferroni approximation leads to NP-hard optimization problems even in settings where the usual Bonferroni approximation is tractable. When the distribution family is specified by moments or by marginal distributions, we derive various sufficient conditions under which the optimized Bonferroni approximation is convex and tractable. We also show that for moment based distribution families and binary decision variables, the optimized Bonferroni approximation can be reformulated as a mixed integer second-order conic set. Finally, we demonstrate how our results can be used to derive a convex reformulation of a distributionally robust joint chance constraint with a specific non-separable distribution family.

Mathematics Subject Classification

90C15 90C47 90C11 

Notes

Acknowledgements

This research has been supported in part by the National Science Foundation Awards #1633196 and #1662774.

References

  1. 1.
    Ahmed, S.: Convex relaxations of chance constrained optimization problems. Optim. Lett. 8(1), 1–12 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ahmed, S., Luedtke, J., Song, Y., Xie, W.: Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs. Math. Program. 162(1–2), 51–81 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bonferroni, C.E.: Teoria statistica delle classi e calcolo delle probabilità. Libreria internazionale Seeber, Florence (1936)zbMATHGoogle Scholar
  4. 4.
    Bukszár, J., Mádi-Nagy, G., Szántai, T.: Computing bounds for the probability of the union of events by different methods. Ann. Oper. Res. 201(1), 63–81 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Calafiore, G.C., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130(1), 1–22 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, W., Sim, M., Sun, J., Teo, C.-P.: From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper. Res. 58(2), 470–485 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cheng, J., Delage, E., Lisser, A.: Distributionally robust stochastic knapsack problem. SIAM J. Optim. 24(3), 1485–1506 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cheng, J., Gicquel, C., Lisser, A.: Partial sample average approximation method for chance constrained problems. Optim. Lett. 13(4), 657–672 (2018).  https://doi.org/10.1007/s11590-018-1300-8 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171(1–2), 115–166 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fréchet, M.: Généralisation du théoreme des probabilités totales. Fundamenta mathematicae 1(25), 379–387 (1935)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gao, R., Kleywegt, A.J.: Distributionally robust stochastic optimization with Wasserstein distance. arXiv preprint arXiv:1604.02199. (2016)
  15. 15.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. 151, 35–62 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: Ambiguous joint chance constraints under mean and dispersion information. Oper. Res. 65(3), 751–767 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hunter, D.: An upper bound for the probability of a union. J. Appl. Probab. 13(3), 597–603 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Jiang, R., Guan, Y.: Data-driven chance constrained stochastic program. Math. Program. 158, 291–327 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kataoka, S.: A stochastic programming model. Econometrica: J. Econom. Soc. 31, 181–196 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kuai, H., Alajaji, F., Takahara, G.: A lower bound on the probability of a finite union of events. Discrete Math. 215(1–3), 147–158 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Lagoa, C.M., Li, X., Sznaier, M.: Probabilistically constrained linear programs and risk-adjusted controller design. SIAM J. Optim. 15(3), 938–951 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Li, B., Jiang, R., Mathieu, J.L.: Ambiguous risk constraints with moment and unimodality information. Math. Program. 173(1), 151–192 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122, 247–272 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)zbMATHCrossRefGoogle Scholar
  27. 27.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design under Uncertainty, pp. 3–47. Springer, London (2006)CrossRefGoogle Scholar
  29. 29.
    Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming, pp. 113–138 (1970)CrossRefGoogle Scholar
  30. 30.
    Prékopa, A.: Stochastic Programming. Springer, Berlin (1995)zbMATHCrossRefGoogle Scholar
  31. 31.
    Prékopa, A.: On the concavity of multivariate probability distribution functions. Oper. Res. Lett. 29(1), 1–4 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier (2003)Google Scholar
  33. 33.
    Prékopa, A., Gao, L.: Bounding the probability of the union of events by aggregation and disaggregation in linear programs. Discrete Appl. Math. 145(3), 444–454 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Rockafellar, R., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)CrossRefGoogle Scholar
  35. 35.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, Berlin (1998)zbMATHCrossRefGoogle Scholar
  36. 36.
    Rüschendorf, L.: Sharpness of Fréchet-bounds. Probab. Theory Relat. Fields 57(2), 293–302 (1981)zbMATHGoogle Scholar
  37. 37.
    Shapiro, A., Kleywegt, A.: Minimax analysis of stochastic problems. Optim. Methods Softw. 17(3), 523–542 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Song, Y., Luedtke, J.R., Küçükyavuz, S.: Chance-constrained binary packing problems. INFORMS J. Comput. 26(4), 735–747 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Wagner, M.R.: Stochastic 0–1 linear programming under limited distributional information. Oper. Res. Lett. 36(2), 150–156 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Wets, R.: Stochastic programming: solution techniques and approximation schemes. In: Bachem, A., Korte, B., Grötschel, M. (eds.) Mathematical Programming: State-of-the-Art 1982, pp. 566–603. Springer, Berlin (1983)CrossRefGoogle Scholar
  41. 41.
    Wets, R.: Stochastic programming. In: Nemhauser, G.L., Rinooy Kan, A.H.G., Todd, M.J. (eds.) Handbooks in Operations Research and Management Science, vol. 1, pp. 573–629. Elsevier (1989)Google Scholar
  42. 42.
    Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Xie, W., Ahmed, S.: Distributionally robust chance constrained optimal power flow with renewables: a conic reformulation. IEEE Trans. Power Syst. 33(2), 1860–1867 (2018)CrossRefGoogle Scholar
  44. 44.
    Xie, W., Ahmed, S.: On deterministic reformulations of distributionally robust joint chance constrained optimization problems. SIAM J. Optim. 28(2), 1151–1182 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Jiang, R., Shen, S.: Ambiguous chance-constrained binary programs under mean-covariance information. SIAM J. Optim. 28(4), 2922–2944 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137, 167–198 (2013)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Authors and Affiliations

  1. 1.Virginia TechBlacksburgUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA
  3. 3.University of MichiganAnn ArborUSA

Personalised recommendations