Distributionally robust optimization with polynomial densities: theory, models and algorithms
- 205 Downloads
Abstract
In distributionally robust optimization the probability distribution of the uncertain problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses the worst distribution from within a known ambiguity set. A common shortcoming of most existing distributionally robust optimization models is that their ambiguity sets contain pathological discrete distributions that give nature too much freedom to inflict damage. We thus introduce a new class of ambiguity sets that contain only distributions with sum-of-squares (SOS) polynomial density functions of known degrees. We show that these ambiguity sets are highly expressive as they conveniently accommodate distributional information about higher-order moments, conditional probabilities, conditional moments or marginal distributions. Exploiting the theoretical properties of a measure-based hierarchy for polynomial optimization due to Lasserre (SIAM J Optim 21(3):864–885, 2011), we prove that certain worst-case expectation constraints are polynomial-time solvable under these new ambiguity sets. We also show how SOS densities can be used to approximately solve the general problem of moments. We showcase the applicability of the proposed approach in the context of a stylized portfolio optimization problem and a risk aggregation problem of an insurance company.
Keywords
Distributionally robust optimization Semidefinite programming Sum-of-squares polynomials Generalized eigenvalue problemMathematics Subject Classification
90C22 90C26 90C15Notes
Acknowledgements
Etienne de Klerk would like to thank Dorota Kurowicka and Jean Bernard Lasserre for valuable discussions and references. Daniel Kuhn gratefully acknowledges financial support from the Swiss National Science Foundation under grant BSCGI0_157733.
References
- 1.Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)zbMATHCrossRefGoogle Scholar
- 2.Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Oper. Res. 50(2), 358–374 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)zbMATHGoogle Scholar
- 5.Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)zbMATHGoogle Scholar
- 6.Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finance 1, 223–236 (2001)zbMATHCrossRefGoogle Scholar
- 7.den Ben-Tal, A., den Hertog, D., de Waegenaere, A., Melenberg, B., Rennen, G.: Robust solutions of optimization problems affected by uncertain probabilities. Manag. Sci. 59(2), 341–357 (2013)CrossRefGoogle Scholar
- 8.De Klerk, E., Laurent, M.: Comparison of Lasserre’s measure-based bounds for polynomial optimization to bounds obtained by simulated annealing. Math. Oper. Res. 43(4), 1317–1325 (2018)MathSciNetCrossRefGoogle Scholar
- 9.De Klerk, E., Laurent, M.: Worst-case examples for Lasserre’s measure–based hierarchy for polynomial optimization on the hypercube (2018). Preprint available at arXiv:1804.05524
- 10.De Klerk, E., Laurent, M., Sun, Z.: Convergence analysis for Lasserre’s measure-based hierarchy of upper bounds for polynomial optimization. Math. Program. Ser. A 162(1), 363–392 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3–4), 197–206 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Doan, X.V., Li, X., Natarajan, K.: Robustness to dependency in portfolio optimization using overlapping marginals. Oper. Res. 63(6), 1468–1488 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Doan, X.V., Natarajan, K.: On the complexity of nonoverlapping multivariate marginal bounds for probabilistic combinatorial optimization problems. Oper. Res. 60(1), 138–49 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Fiala, J., Kočvara, M., Michael Stingl, M.: PENLAB: a MATLAB solver for nonlinear semidefinite optimization. http://arxiv.org/pdf/1311.5240v1.pdf (2013)
- 16.Genz, A., Cools, R.: An adaptive numerical cubature algorithm for simplices. ACM Trans. Math. Softw. 29(3), 297–308 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Goh, J., Sim, M.: Distributionally robust optimization and its tractable approximations. Oper. Res. 58(4), 902–917 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
- 19.Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming. http://cvxr.com/cvx (2014)
- 20.Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, New York (1988)zbMATHCrossRefGoogle Scholar
- 21.Grundmann, A., Moeller, H.M.: Invariant integration formulas for the \(n\)-simplex by combinatorial methods. SIAM J. Numer. Anal. 15, 282–290 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. Ser. B 151(1), 35–62 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: Ambiguous joint chance constraints under mean and dispersion information. Oper. Res. 65(3), 751–767 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Hanasusanto, G.A., Kuhn, D., Wallace, S.W., Zymler, S.: Distributionally robust multi-item newsvendor problems with multimodal demand distributions. Math. Program. Ser. A 152(1), 1–32 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Kroo, A., Szilárd, R.: On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies. J. Approx. Theory 99(1), 134–152 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Lasserre, J.B., Zeron, E.S.: Solving a class of multivariate integration problems via Laplace techniques. Appl. Math. 28(4), 391–405 (2001)MathSciNetzbMATHGoogle Scholar
- 27.Lasserre, J.B.: A semidefinite programming approach to the generalized problem of moments. Math. Program. Ser. B 112, 65–92 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Lasserre, J.B.: A new look at nonnegativity on closed sets and polynomial optimization. SIAM J. Optim. 21(3), 864–885 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Lasserre, J.B.: The \({\mathbf{K}}\)-moment problem for continuous linear functionals. Trans. Am. Math. Soc. 365(5), 2489–2504 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Lasserre, J.B., Weisser, T.: Representation of distributionally robust chance-constraints (2018). Preprint available at arXiv:1803.11500
- 31.Li, B., Jiang, R., Mathieu, J.L.: Ambiguous risk constraints with moment and unimodality information. Mathematical Programming Series A (to appear) (2017). Preprint available at http://www.optimization-online.org/DB_FILE/2016/09/5635.pdf
- 32.Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference (2004)Google Scholar
- 33.McNeil, A., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
- 34.Marichal, J.-L., Mossinghof, M.J.: Slices, slabs, and sections of the unit hypercube. Online J. Anal. Comb. 3, 1–11 (2008)MathSciNetzbMATHGoogle Scholar
- 35.Mevissen, M., Ragnoli, E., Yu, J.Y.: Data-driven distributionally robust polynomial optimization. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 37–45. Curran Associates, Inc. (2013)Google Scholar
- 36.Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. Ser. A 171(1–2), 115–166 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Natarajan, K., Pachamanova, D., Sim, M.: Constructing risk measures from uncertainty sets. Oper. Res. 57(5), 1129–1141 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Pflug, G.C., Pichler, A., Wozabal, D.: The \(1/N\) investment strategy is optimal under high model ambiguity. J. Bank. Finance 36(2), 410–417 (2012)CrossRefGoogle Scholar
- 39.Pflug, G.C., Wozabal, D.: Ambiguity in portfolio selection. Quant. Finance 7, 435–442 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Popescu, I.: A semidefinite programming approach to optimal-moment bounds for convex classes of distributions. Math. Oper. Res. 30(3), 632–657 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Berlin (1995)zbMATHCrossRefGoogle Scholar
- 42.Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)zbMATHCrossRefGoogle Scholar
- 43.Rogosinski, W.W.: Moments of non-negative mass. Proc. R. Soc. A 245, 1–27 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Scarf, H.: A min–max solution of an inventory problem. In: Scarf, H., Arrow, K., Karlin, S. (eds.) Studies in the Mathematical Theory of Inventory and Production, vol. 10, pp. 201–209. Stanford University Press, Redwood City (1958)Google Scholar
- 45.Sklar, A.: Fonctions de répartition à \(n\) dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8, 229–231 (1959)zbMATHMathSciNetGoogle Scholar
- 46.Shapiro, A.: On duality theory of conic linear problems. In: Goberna, M.Á., López, M.A. (eds.) Semi-Infinite Programming: Recent Advances, pp. 135–165. Springer, New York (2001)CrossRefGoogle Scholar
- 47.Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)zbMATHCrossRefGoogle Scholar
- 48.Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. In: Optimization Methods and Software, pp. 11–12, 625–653 (1999)Google Scholar
- 49.Van Parys, B.P.G., Goulart, P.J., Embrechts, P.: Fréchet inequalities via convex optimization (2016). Preprint available at http://www.optimization-online.org/DB_FILE/2016/07/5536.pdf
- 50.Van Parys, B.P.G., Goulart, P.J., Kuhn, D.: Generalized Gauss inequalities via semidefinite programming. Math. Program. Ser. A 156(1–2), 271–302 (2016)MathSciNetzbMATHGoogle Scholar
- 51.Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Žáčková, J.: On minimax solutions of stochastic linear programming problems. Časopis pro pěstování matematiky 91, 423–430 (1966)MathSciNetzbMATHGoogle Scholar
- 53.Zuluaga, L., Peña, J.F.: A conic programming approach to generalized Tchebycheff inequalities. Math. Oper. Res. 30(2), 369–388 (2005)MathSciNetzbMATHCrossRefGoogle Scholar