Uniqueness of DRS as the 2 operator resolvent-splitting and impossibility of 3 operator resolvent-splitting

  • Ernest K. RyuEmail author
Full Length Paper Series A


Given the success of Douglas–Rachford splitting (DRS), it is natural to ask whether DRS can be generalized. Are there other 2 operator resolvent-splittings sharing the favorable properties of DRS? Can DRS be generalized to 3 operators? This work presents the answers: no and no. In a certain sense, DRS is the unique 2 operator resolvent-splitting, and generalizing DRS to 3 operators is impossible without lifting, where lifting roughly corresponds to enlarging the problem size. The impossibility result further raises a question. How much lifting is necessary to generalize DRS to 3 operators? This work presents the answer by providing a novel 3 operator resolvent-splitting with provably minimal lifting that directly generalizes DRS.


Douglas–Rachford splitting Splitting methods Maximal monotone operators Lower bounds First-order methods 

Mathematics Subject Classification

47H05 47H09 65K10 90C25 



I would like to thank Wotao Yin for helpful comments and suggestions. I would also like to thank the anonymous associate editor and referees whose comments improved the paper significantly. In particular, the signal denoising numerical example was suggested by one of the anonymous reviewers. This work is supported in part by NSF Grant DMS-1720237 and ONR Grant N000141712162.


  1. 1.
    Banert, S.: A relaxed forward–backward splitting algorithm for inclusions of sums of monotone operators. Master’s thesis, Technische Universität Chemnitz (2012)Google Scholar
  2. 2.
    Barbero, Á., Sra, S.: Fast Newton-type methods for total variation regularization. In: Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML), pp. 313–320 (2011)Google Scholar
  3. 3.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)zbMATHCrossRefGoogle Scholar
  4. 4.
    Boţ, R., Wanka, G.: Farkas-type results with conjugate functions. SIAM J. Optim. 15(2), 540–554 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Boţ, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–2565 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Boţ, R.I., Hendrich, C.: Convex risk minimization via proximal splitting methods. Optim. Lett. 9(5), 867–885 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Brezis, H., Lions, P.L.: Produits infinis de resolvantes. Isr. J. Math. 29(4), 329–345 (1978)zbMATHCrossRefGoogle Scholar
  8. 8.
    Briceño-Arias, L.M.: Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization 64(5), 1239–1261 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Briceño-Arias, L.M., Davis, D.: Forward–backward–half forward algorithm with non self-adjoint linear operators for solving monotone inclusions. SIAM J. Optim. 28(4), 2839–2871 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios. Proc. Natl. Acad. Sci. U. S. A. 106(30), 12267–12272 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Byrne, C.L.: Iterative image reconstruction algorithms based on cross-entropy minimization. IEEE Trans. Image Process. 2(1), 96–103 (1993)CrossRefGoogle Scholar
  13. 13.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chaux, C., Pesquet, J., Pustelnik, N.: Nested iterative algorithms for convex constrained image recovery problems. SIAM J. Imaging Sci. 2(2), 730–762 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29(2), 025011 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions. Fixed Point Theory Appl. 2016, 54 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chen, Y., Ye, X.: Projection onto a simplex. arXiv preprint arXiv:1101.6081 (2011)
  18. 18.
    Combettes, P.L., Condat, L., Pesquet, J.C., Vũ, B.C.: A forward–backward view of some primal-dual optimization methods in image recovery. In: IEEE International Conference on Image Processing (2014)Google Scholar
  19. 19.
    Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168(1), 645–672 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Probl. 24(6), 065014 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  22. 22.
    Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set Valued Var. Anal. 20(2), 307–330 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013)CrossRefGoogle Scholar
  24. 24.
    Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set Valued Var. Anal. 25(4), 829–858 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Dinh, N., Goberna, M.A., López, M.A., Son, T.Q.: New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim. Calc. Var. 13(3), 580–597 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Drori, Y., Sabach, S., Teboulle, M.: A simple algorithm for a class of nonsmooth convex–concave saddle-point problems. Oper. Res. Lett. 43(2), 209–214 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Eckstein, J.: A simplified form of block-iterative operator splitting and an asynchronous algorithm resembling the multi-block alternating direction method of multipliers. J. Optim. Theory Appl. 173(1), 155–182 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und angewandte Mathematik 124, 1–27 (1902)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps: asynchronous and block-iterative operator splitting. arXiv preprint arXiv:1803.07043 (2018)
  33. 33.
    Johnstone, P.R., Eckstein, J.: Convergence rates for projective splitting. SIAM J. Optim. (2019)Google Scholar
  34. 34.
    Kamilov, U., Bostan, E., Unser, M.: Generalized total variation denoising via augmented Lagrangian cycle spinning with Haar wavelets. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 909–912 (2012)Google Scholar
  35. 35.
    Karahanoglu, F.I., Bayram, İ., Ville, D.V.D.: A signal processing approach to generalized 1-D total variation. IEEE Trans. Signal Process. 59(11), 5265–5274 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Latafat, P., Patrinos, P.: Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators. Comput. Optim. Appl. 68(1), 57–93 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Loris, I., Verhoeven, C.: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Probl. 27(12), 125007 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Malitsky, Y., Tam, M.K.: A forward–backward splitting method for monotone inclusions without cocoercivity. arXiv preprint arXiv:1808.04162 (2018)
  41. 41.
    Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. d’Inform. Rech. Oper. Sér. Rouge 4(3), 154–158 (1970)zbMATHGoogle Scholar
  42. 42.
    Martinet, B.: Determination approchée d’un point fixe d’une application pseudo-contractante. C. R. l’Acad. Sci. Sér. A 274, 163–165 (1972)zbMATHGoogle Scholar
  43. 43.
    Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: IEEE International Conference on Computer Vision (2009)Google Scholar
  46. 46.
    Raguet, H.: A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization. Optim. Lett. 13(4), 717–740 (2019). MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Raguet, H., Fadili, J., Peyré, G.: A generalized forward–backward splitting. SIAM J. Imaging Sci. 6(3), 1199–1226 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Rapaport, F., Barillot, E., Vert, J.P.: Classification of arrayCGH data using fused SVM. Bioinformatics 24(13), i375–i382 (2008)CrossRefGoogle Scholar
  49. 49.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Ryu, E.K., Boyd, S.: Primer on monotone operator methods. Appl. Comput. Math. 15, 3–43 (2016)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Spingarn, J.E.: Applications of the method of partial inverses to convex programming: decomposition. Math. Program. 32(2), 199–223 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67(1), 91–108 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Tibshirani, R., Wang, P.: Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics 9(1), 18–29 (2008)zbMATHCrossRefGoogle Scholar
  54. 54.
    Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Wahlberg, B., Boyd, S., Annergren, M., Wang, Y.: An ADMM algorithm for a class of total variation regularized estimation problems. IFAC Proc. Vol. 45(16), 83–88 (2012)CrossRefGoogle Scholar
  57. 57.
    Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput. 76(3), 1698–1717 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Probl. 25(4), 045010 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report 08–34 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Authors and Affiliations

  1. 1.7324 Mathematical SciencesUCLALos AngelesUSA

Personalised recommendations