Using regularization and second order information in outer approximation for convex MINLP

  • Jan Kronqvist
  • David E. Bernal
  • Ignacio E. Grossmann
Full Length Paper Series A


In this paper, we present two new methods for solving convex mixed-integer nonlinear programming problems based on the outer approximation method. The first method is inspired by the level method and uses a regularization technique to reduce the step size when choosing new integer combinations. The second method combines ideas from both the level method and the sequential quadratic programming technique and uses a second order approximation of the Lagrangean when choosing the new integer combinations. The main idea behind the methods is to choose the integer combination more carefully at each iteration, in order to obtain the optimal solution in fewer iterations compared to the original outer approximation method. We prove rigorously that both methods will find and verify the optimal solution in a finite number of iterations. Furthermore, we present a numerical comparison of the methods based on 109 test problems to illustrate their advantages.

Mathematics Subject Classification

65K05 90C11 90C30 90C55 



Jan Kronqvist is grateful for the grants given by Walter Ahlström foundation, Svenska tekniska vetenskapsakademien i Finland, Tekniikan edistämissäätiö, TFIF and Waldemar von Frenckells stiftelse, which made the research visit at Carnegie Mellon University possible. David E. Bernal and Ignacio E. Grossmann would like to thank the Center Advanced Process Decision Making (CAPD) for its financial support. The authors would like to acknowledge the Dagstuhl Seminar 18081 on Designing and Implementing Algorithms for Mixed-Integer Nonlinear Optimization, where an early version of the results shown in this manuscript were presented and discussed.

Supplementary material

10107_2018_1356_MOESM1_ESM.pdf (39 kb)
Supplementary material 1 (pdf 38 KB)


  1. 1.
    Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Berlin (2014)CrossRefGoogle Scholar
  2. 2.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Biegler, L.T., Grossmann, I.E.: Retrospective on optimization. Comput. Chem. Eng. 28(8), 1169–1192 (2004)CrossRefGoogle Scholar
  4. 4.
    Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discr. Optim. 5(2), 186–204 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Program. 119(2), 331–352 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  7. 7.
    Currie, J., Wilson, D.I.: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user. In: Sahinidis, N., Pinto, J. (eds.) Foundations of Computer-Aided Process Operations. Savannah, Georgia (2012)Google Scholar
  8. 8.
    Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. B 91(2), 201–213 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    den Hertog, D., Kaliski, J., Roos, C., Terlaky, T.: A logarithmic barrier cutting plane method for convex programming. Ann. Oper. Res. 58(2), 67–98 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    de Oliveira, W.: Regularized optimization methods for convex MINLP problems. TOP 24(3), 665–692 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1), 327–349 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Floudas, C.A.: Deterministic global optimization. Theory, methods and applications In: Nonconvex Optimization and its Applications, vol. 37. Springer, US (2000)Google Scholar
  15. 15.
    GAMSWorld: mixed-integer nonlinear programming library. (2016). Accessed 24 Nov 2016
  16. 16.
    Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gershgorin, S.A.: Uber die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na 6, 749–754 (1931)zbMATHGoogle Scholar
  18. 18.
    Grossmann, I.E., Viswanathan, J., Vecchietti, A., Raman, R., Kalvelagen, E.: GAMS/DICOPT: A Discrete Continuous Optimization Package (2002)Google Scholar
  19. 19.
    Gurobi Optimization, I.: Gurobi optimizer reference manual. (2016)
  20. 20.
    IBM Corp., IBM: V12.6: User’s Manual for CPLEX. Int. Bus. Mach. Corp. 12(1), 481 (2009)Google Scholar
  21. 21.
    Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69(1–3), 89–109 (1995)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kronqvist, J., Lundell, A., Westerlund, T.: Reformulations for utilizing separability when solving convex MINLP problems. J. Glob. Optim. 71(3), 571–592 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lee, J., Leyffer, S. (eds.): Mixed Integer Nonlinear Programming, vol. 154. Springer, Berlin (2011)Google Scholar
  26. 26.
    Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–3), 111–147 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin (2004)zbMATHGoogle Scholar
  28. 28.
    Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)CrossRefGoogle Scholar
  29. 29.
    Slater, M., et al.: Lagrange multipliers revisited. Technical report, Cowles Foundation for Research in Economics, Yale University (1959)Google Scholar
  30. 30.
    Trespalacios, F., Grossmann, I.E.: Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chem. Ing. Tech. 86(7), 991–1012 (2014). CrossRefGoogle Scholar
  31. 31.
    Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990)CrossRefGoogle Scholar
  32. 32.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wei, Z., Ali, M.M.: Outer approximation algorithm for one class of convex mixed-integer nonlinear programming problems with partial differentiability. J. Optim. Theory Appl. 167(2), 644–652 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Westerlund, T., Petterson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, S131–S136 (1995)CrossRefGoogle Scholar
  35. 35.
    Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3(3), 253–280 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wolfe, P.: A duality theorem for non-linear programming. Q. Appl. Math. 19(3), 239–244 (1961)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zaourar, S., Malick, J.: Quadratic stabilization of Benders decomposition. (2014). Working paper or preprint

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Authors and Affiliations

  1. 1.Process Design and Systems EngineeringÅbo Akademi UniversityTurkuFinland
  2. 2.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations