Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photobiomodulation via multiple-wavelength radiations

  • 154 Accesses

Abstract

Photobiomodulation via a combination of different radiations can produce different effects on biological tissues, such as cell proliferation and differentiation, when compared to those produced via a single radiation. The present study aims to conduct a review of the literature addressing the results and applications of photobiomodulation induced by a combination of two or more radiations as well as their possible effects. PubMed was used to search for studies with restrictions on the year (< 50 years old) and language (English), including studies using human and animal models, either under healthy or pathologic conditions. Several studies have been conducted to evaluate the combination of different radiation effects on cells and biological tissues. Positive effects resulting from multiple-wavelength radiations could be attributed to different absorption levels because superficial and deep tissues could absorb different levels of radiations. Multiple-wavelength radiations from devices combining radiations emitted by low power lasers and light-emitting diodes could be a new approach for promoting photobiomodulation-induced beneficial effects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–1017

  2. 2.

    Solmaz H, Ulgen Y, Gulsoy M (2017) Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med Sci 32(4):903–910

  3. 3.

    Gavish L, Houreld NN (2019) Therapeutic efficacy of home-use photobiomodulation devices: a systematic literature review. Photomed Laser Surg 37(1):4–16

  4. 4.

    de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417

  5. 5.

    Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR (2019) Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 34(1):115–126

  6. 6.

    da Fonseca AS (2019) Is there a measure for low power laser dose? Lasers Med Sci 34(1):223–234

  7. 7.

    Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23(12):1–17

  8. 8.

    Menezes S, Coulomb B, Leberton C, Duberteret L (1998) Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol 111(4):629–633

  9. 9.

    Santos NR, de M Sobrinho JB, Almeida PF, Ribeiro AA, Cangussú MC, dos Santos JN, Pinheiro AL (2011) Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. Photomed Laser Surg 29(3):177–182

  10. 10.

    Walker J (2011) Fundamentals of physics. Wiley, Hoboken

  11. 11.

    Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17

  12. 12.

    Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer-Verlag, New York

  13. 13.

    Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B 140:344–358

  14. 14.

    Karu T (1987) Biostimulation of HeLa cells by low-intensity visible light: V. Stimulation of cell proliferation in vitro by He-Ne laser radiation II Nuovo cimento D. 9:1485–1494

  15. 15.

    Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610

  16. 16.

    Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212

  17. 17.

    Poyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 11(57):154–159

  18. 18.

    Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099

  19. 19.

    Hamblin MR, Ferraresi C, Huang Y, de Freitas L, Carroll JD (2018) Low-level light therapy: photobiomodulation. SPIE Press, Washington

  20. 20.

    Laakso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39(2):95–99

  21. 21.

    Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361

  22. 22.

    Martins WA, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2015) Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids. Laser Phys 25(4):045603

  23. 23.

    Thomé AMC, Souza BP, Mendes JPM, Soares LC, Trajano ETL, Fonseca AS (2017) Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Phys 27(5):055602

  24. 24.

    Thomé AMC, Souza BP, Mendes JPM, Cardoso AFR, Soares LC, Trajano ETL et al (2018) Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans. Laser Phys 28(6):065606

  25. 25.

    Ashrafi M, Novak-Frazer L, Bates M, Baguneid M, Alonso-Rasgado T, Xia G et al (2018) Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci Rep 8(1):9431

  26. 26.

    Jahangiri Noudeh Y, Shabani M, Vatankhah N, Hashemian SJ, Akbari K (2010) A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed Laser Surg 28(5):621–627

  27. 27.

    Mendez TM, Pinheiro AL, Pacheco MT, Nascimento PM, Ramalho LM (2004) Dose and wavelength of laser light have influence on the repair of cutaneous wounds. J Clin Laser Med Surg 22(1):19–25

  28. 28.

    Barikbin B, Khodamrdi Z, Kholoosi L, Akhgri MR, Haj Abbasi M, Hajabbasi M, Razzaghi Z, Akbarpour S (2017) Comparison of the effects of 665 nm low level diode laser hat versus and a combination of 665 nm and 808nm low level diode laser scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther in press

  29. 29.

    Gigo-Benato D, Geuna S, de Castro Rodrigues A, Tos P, Fornaro M, Boux E, Battiston B, Giacobini-Robecchi MG (2004) Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci 19(1):57–65

  30. 30.

    Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51(2):129–135

  31. 31.

    Miranda EF, de Oliveira LV, Antonialli FC, Vanin AA, de Carvalho PT, Leal-Junior EC (2015) Phototherapy with combination of superpulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med Sci 30(1):437–443

  32. 32.

    Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos GV, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976

  33. 33.

    Farhat PBA, Santos FA, Gomes JC, Gomes OM (2014) Evaluation of the efficacy of LED-laser treatment and control of tooth sensitivity during in-office bleaching procedures. Photomed Laser Surg 32(7):422–426

  34. 34.

    Leal-Junior EC, Johnson DS, Saltmarche A, Demchak T (2014) Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. Lasers Med Sci 29(6):1839–1847

  35. 35.

    Figurová M, Ledecký V, Karasová M, Hluchý M, Trbolová A, Capík I, Horňák S, Reichel P, Bjordal JM, Gál P (2016) Histological assessment of a combined low-level laser/light-emitting diode therapy (685 nm/470 nm) for sutured skin incisions in a porcine model: a short report. Photomed Laser Surg 34(2):53–55

  36. 36.

    Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana AC, de Rezende ML, Greghi SL, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59

  37. 37.

    Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99

  38. 38.

    de Carvalho ME, de Carvalho RM Jr, Marques AP, de Carvalho Lucio LM, de Oliveira AC, Neto OP, Villaverde AB, de Lima CJ (2016) Low intensity laser and LED therapies associated with lateral decubitus position and flexion exercises of the lower limbs in patients with lumbar disk herniation: clinical randomized trial. Lasers Med Sci 31(7):1455–1463

  39. 39.

    Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381

  40. 40.

    Naderi MS, Razzaghi M, Esmaeeli Djavid G, Hajebrahimi Z (2017) A comparative study of 660 nm low-level laser and light emitted diode in proliferative effects of fibroblast cells. J Lasers Med Sci 8(Suppl 1):S46–S50

  41. 41.

    Chaves ME, Araújo AR, Piancastelli AC, Pinotti M (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623

  42. 42.

    Karu T (1985) Biostimulation of HeLa cells by low-intensity visible light: IY. – dichromatic irradiation. II Nuovo cimento D. 5(6):483

  43. 43.

    Tiphlova O, Karu T (1991) Action of low-intensity laser radiation on Escherichia coli division rate. Crit Rev Biomed Eng 18(6):387–412

Download references

Funding

This study was funded by Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Universidade do Estado do Rio de Janeiro (UERJ).

Author information

Correspondence to Andrezza Maria Côrtes Thomé Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lima, A.M.C.T., da Silva Sergio, L.P. & de Souza da Fonseca, A. Photobiomodulation via multiple-wavelength radiations. Lasers Med Sci 35, 307–316 (2020). https://doi.org/10.1007/s10103-019-02879-1

Download citation

Keywords

  • Photobiomodulation
  • Low power laser
  • Multi-wavelength
  • LED