Advertisement

Laser-assisted prevention of enamel caries: a 10-year review of the literature

  • Mohammed Abbood Al-MalikyEmail author
  • Matthias Frentzen
  • Jörg Meister
Review Article
  • 30 Downloads

Abstract

Since the invention of lasers in dentistry, investigations in caries prevention by the use of laser radiation have been proposed. There are several mechanisms stated for this purpose such as photothermal and/or photochemical interaction processes with the enamel. Alone or in conjugation with topical fluoride application, this treatment modality may improve enamel acid resistance in high-caries-risk populations. Data collection was done by searching the keywords caries, prevention, and laser in PubMed, Embase, Web of Science, Cochrane Library, and Google Scholar. Lasing protocols of the collected literature and their effectiveness as well as examination methods used to verify treatment outcomes have been evaluated. One hundred eighteen publications were found for the last 10 years. The wavelengths investigated for caries prevention are mainly located in the near and the mid-infrared spectral range. In the evaluated period of time, investigations using CO2; Er:YAG; Er,Cr:YSGG; Er:YLF; fundamental, second, and third harmonic generations of Nd:YAG; diodes; and argon ion lasers were found in the databases. Accounting for 39% of the literature, CO2 laser was the most examined system for this purpose. Reviewing the literature in this narrative review showed that all laser systems presented a positive effect in varying degrees. Laser irradiation could be an alternative or synergistic to topical fluoridation for enamel caries prevention with longer lasting effect. Further research should be focused on selecting proper laser settings to avoid damage to enamel and developing effective evidence-based clinical protocols.

Keywords

Caries Prevention Laser Fluoride Enamel Acid resistance 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This type of publication does not require ethical review.

Informed consent

This type of publication does not require informed consent.

References

  1. 1.
    Featherstone JD (1987) The mechanism of dental decay. Nutr Today 22:10–16CrossRefGoogle Scholar
  2. 2.
    ten Cate JM, Featherstone JD (1991) Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med 2:283–296CrossRefPubMedGoogle Scholar
  3. 3.
    Featherstone JD (2006) Delivery challenges for fluoride, chlorhexidine and xylitol. BMC Oral Health 6(Suppl 1):S8.  https://doi.org/10.1186/1472-6831-6-s1-s8 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ten Cate JM, Duijsters PP (1983) Influence of fluoride in solution on tooth demineralization. I. Chemical data. Caries Res 17:193–199CrossRefPubMedGoogle Scholar
  5. 5.
    Ten Cate JM, Duijsters PP (1983) Influence of fluoride in solution on tooth demineralization. II. Microradiographic data. Caries Res 17:513–519CrossRefPubMedGoogle Scholar
  6. 6.
    Featherstone JD (2004) The continuum of dental caries--evidence for a dynamic disease process. J Dent Res 83 Spec No C:C39–C42CrossRefPubMedGoogle Scholar
  7. 7.
    Fu X, Xie FN, Dong P, Li QC, Yu GY, Xiao R (2016) High-dose fluoride impairs the properties of human embryonic stem cells via JNK signaling. PLoS One 11:e0148819.  https://doi.org/10.1371/journal.pone.0148819 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59.  https://doi.org/10.1016/s0140-6736(07)60031-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Hicks MJ, Flaitz CM (1993) Epidemiology of dental caries in the pediatric and adolescent population: a review of past and current trends. J Clin Pediatr Dent 18:43–49PubMedGoogle Scholar
  10. 10.
    Stern RH, Sognnaes RF, Goodman F (1966) Laser effect on in vitro enamel permeability and solubility. J Am Dent Assoc 73:838–843CrossRefPubMedGoogle Scholar
  11. 11.
    Sognnaes RF, Stern RH (1965) Laser effect on resistance of human dental enamel to demineralization in vitro. J South Calif State Dent Assoc 33:328–329PubMedGoogle Scholar
  12. 12.
    Fried DFJ, Visuri SR, Seka WD, Walsh JT (1996) Caries inhibition potential of Er: YAG and Er:YSGG laser radiation. In: Wigdor HA, Featherstone J, White JM, Neev J (eds) Proceedings of SPIE - the international society for optical engineering, pp 73–78Google Scholar
  13. 13.
    Burnett GW, Zenewitz J (1958) Studies of the composition of teeth. VII. The moisture content of calcified tooth tissues. J Dent Res 37:581–589.  https://doi.org/10.1177/00220345580370040301 CrossRefPubMedGoogle Scholar
  14. 14.
    Carlstrom D, Glas JE, Angmar B (1963) Studies on the ultrastructure of dental enamel. V. The state of water in human enamel. J Ultrastruct Res 8:24–29CrossRefPubMedGoogle Scholar
  15. 15.
    Holcomb DW, Young RA (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31:189–201CrossRefPubMedGoogle Scholar
  16. 16.
    Gonzalez-Rodriguez A, de Dios L-GJ, del Castillo JD, Villalba-Moreno J (2011) Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation. Lasers Med Sci 26:317–324.  https://doi.org/10.1007/s10103-010-0784-y CrossRefPubMedGoogle Scholar
  17. 17.
    Nammour S, Demortier G, Florio P, Delhaye Y, Pireaux JJ, Morciaux Y, Powell L (2003) Increase of enamel fluoride retention by low fluence argon laser in vivo. Lasers Surg Med 33:260–263.  https://doi.org/10.1002/lsm.10219 CrossRefPubMedGoogle Scholar
  18. 18.
    Zezell DM, Boari HG, Ana PA, Eduardo Cde P, Powell GL (2009) Nd:YAG laser in caries prevention: a clinical trial. Lasers Surg Med 41:31–35.  https://doi.org/10.1002/lsm.20738 CrossRefPubMedGoogle Scholar
  19. 19.
    Rechmann P, Charland DA, Rechmann BM, Le CQ, Featherstone JD (2013) In-vivo occlusal caries prevention by pulsed CO2 -laser and fluoride varnish treatment--a clinical pilot study. Lasers Surg Med 45:302–310.  https://doi.org/10.1002/lsm.22141 CrossRefPubMedGoogle Scholar
  20. 20.
    Rechmann P, Fried D, Le CQ, Nelson G, Rapozo-Hilo M, Rechmann BM, Featherstone JD (2011) Caries inhibition in vital teeth using 9.6-mum CO2-laser irradiation. J Biomed Opt 16:071405.  https://doi.org/10.1117/1.3564908 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li R, Ma X, Liang S, Sa Y, Jiang T, Wang Y (2012) Optical properties of enamel and translucent composites by diffuse reflectance measurements. J Dent 40(Suppl 1):e40–e47.  https://doi.org/10.1016/j.jdent.2012.04.016 CrossRefPubMedGoogle Scholar
  22. 22.
    Karandish M (2014) The efficiency of laser application on the enamel surface: a systematic review. J Lasers Med Sci 5:108–114PubMedPubMedCentralGoogle Scholar
  23. 23.
    Sadr Haghighi H, Skandarinejad M, Abdollahi AA (2013) Laser application in prevention of demineralization in orthodontic treatment. J Lasers Med Sci 4:107–110PubMedPubMedCentralGoogle Scholar
  24. 24.
    Raghis TR, Mahmoud G, Hamadah O (2018) Effectiveness of laser irradiation in preventing enamel demineralization during orthodontic treatment: a systematic review. Dent Med Probl 55:321–332.  https://doi.org/10.17219/dmp/92636 CrossRefPubMedGoogle Scholar
  25. 25.
    Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj 343:d5928.  https://doi.org/10.1136/bmj.d5928 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Correa-Afonso AM, Pecora JD, Palma-Dibb RG (2013) Influence of laser irradiation on pits and fissures: an in situ study. Photomed Laser Surg 31:82–89.  https://doi.org/10.1089/pho.2012.3304 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Raucci-Neto W, de Castro-Raucci LMS, Lepri CP, Faraoni-Romano JJ, da Silva JMG, Palma-Dibb RG (2013) Nd:YAG laser in occlusal caries prevention of primary teeth: a randomized clinical trial. Lasers Med Sci 30:761–768.  https://doi.org/10.1007/s10103-013-1417-z CrossRefPubMedGoogle Scholar
  28. 28.
    Miresmaeili A, Farhadian N, Rezaei-Soufi L, Saharkhizan M, Veisi M (2014) Effect of carbon dioxide laser irradiation on enamel surface microhardness around orthodontic brackets. Am J Orthod Dentofac Orthop 146:161–165.  https://doi.org/10.1016/j.ajodo.2014.04.023 CrossRefGoogle Scholar
  29. 29.
    Raucci Neto W, Lepri CP, Faraoni Romano JJ, Fernandes FS, de Castro Raucci LM, Bachmann L, Dibb RG (2015) Chemical and morphological changes of primary teeth irradiated with Nd:YAG laser: an ex vivo long-term analysis. Photomed Laser Surg 33:266–273.  https://doi.org/10.1089/pho.2014.3876 CrossRefPubMedGoogle Scholar
  30. 30.
    Souza-Gabriel AE, Turssi CP, Colucci V, Tenuta LM, Serra MC, Corona SA (2015) In situ study of the anticariogenic potential of fluoride varnish combined with CO2 laser on enamel. Arch Oral Biol 60:804–810.  https://doi.org/10.1016/j.archoralbio.2015.01.016 CrossRefPubMedGoogle Scholar
  31. 31.
    Suetenkov DY, Petrova AP, Kharitonova TL (2015) Photo activated disinfection efficiency of low-intensity laser and comprehensive prevention of caries and gingivitis in adolescents using bracket system. Journal of Innovative Optical Health Sciences 8.  https://doi.org/10.1142/s1793545815410023
  32. 32.
    Kaur T, Tripathi T, Rai P, Kanase A (2017) SEM evaluation of enamel surface changes and enamel microhardness around orthodontic brackets after application of CO2 laser, Er, Cr:YSGG laser and fluoride varnish: an in vivo study. J Clin Diagn Res 11:ZC59–ZC63.  https://doi.org/10.7860/jcdr/2017/30292.10603 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Esteves-Oliveira M, Zezell DM, Meister J, Franzen R, Stanzel S, Lampert F, Eduardo CP, Apel C (2009) CO2 laser (10.6 microm) parameters for caries prevention in dental enamel. Caries Res 43:261–268.  https://doi.org/10.1159/000217858 CrossRefPubMedGoogle Scholar
  34. 34.
    da Silva Tagliaferro EP, Rodrigues LK, Soares LE, Martin AA, Nobre-dos-Santos M (2009) Physical and compositional changes on demineralized primary enamel induced by CO2 laser. Photomed Laser Surg 27:585–590.  https://doi.org/10.1089/pho.2008.2311 CrossRefPubMedGoogle Scholar
  35. 35.
    Cohen J, Featherstone JD, Le CQ, Steinberg D, Feuerstein O (2014) Effects of CO2 laser irradiation on tooth enamel coated with biofilm. Lasers Surg Med 46:216–223.  https://doi.org/10.1002/lsm.22218 CrossRefPubMedGoogle Scholar
  36. 36.
    Seino PY, Freitas PM, Marques MM, de Souza Almeida FC, Botta SB, Moreira MS (2015) Influence of CO2 (10.6 mum) and Nd:YAG laser irradiation on the prevention of enamel caries around orthodontic brackets. Lasers Med Sci 30:611–616.  https://doi.org/10.1007/s10103-013-1380-8 CrossRefPubMedGoogle Scholar
  37. 37.
    Correa-Afonso AM, Bachmann L, de Almeida CG, Dibb RG, Corona SA, Borsatto MC (2013) CO(2)-lased enamel microhardness after brushing and cariogenic challenge. J Biomed Opt 18:108003.  https://doi.org/10.1117/1.jbo.18.10.108003 CrossRefPubMedGoogle Scholar
  38. 38.
    Can AM, Darling CL, Ho C, Fried D (2008) Non-destructive assessment of inhibition of demineralization in dental enamel irradiated by a lambda=9.3-microm CO2 laser at ablative irradiation intensities with PS-OCT. Lasers Surg Med 40:342–349.  https://doi.org/10.1002/lsm.20633 CrossRefPubMedGoogle Scholar
  39. 39.
    Hsu DJ, Darling CL, Lachica MM, Fried D (2008) Nondestructive assessment of the inhibition of enamel demineralization by CO2 laser treatment using polarization sensitive optical coherence tomography. J Biomed Opt 13:054027.  https://doi.org/10.1117/1.2976113 CrossRefPubMedGoogle Scholar
  40. 40.
    Souza-Gabriel AE, Colucci V, Turssi CP, Serra MC, Corona SA (2010) Microhardness and SEM after CO(2) laser irradiation or fluoride treatment in human and bovine enamel. Microsc Res Tech 73:1030–1035.  https://doi.org/10.1002/jemt.20827 CrossRefPubMedGoogle Scholar
  41. 41.
    Correa-Afonso AM, Ciconne-Nogueira JC, Pecora JD, Palma-Dibb RG (2012) In vitro assessment of laser efficiency for caries prevention in pits and fissures. Microsc Res Tech 75:245–252.  https://doi.org/10.1002/jemt.21050 CrossRefPubMedGoogle Scholar
  42. 42.
    Correa-Afonso AM, Bachmann L, Almeida CG, Corona SA, Borsatto MC (2012) FTIR and SEM analysis of CO2 laser irradiated human enamel. Arch Oral Biol 57:1153–1158.  https://doi.org/10.1016/j.archoralbio.2012.02.004 CrossRefPubMedGoogle Scholar
  43. 43.
    Nahm BJ, Kang H, Chan K, Fried D (2012) Investigation of acid-etched CO2 laser ablated enamel surfaces using polarization sensitive optical coherence tomography. Proc SPIE Int Soc Opt Eng 8208.  https://doi.org/10.1117/12.914634
  44. 44.
    de Souza-e-Silva CM, Parisotto TM, Steiner-Oliveira C, Kamiya RU, Rodrigues LK, Nobre-dos-Santos M (2013) Carbon dioxide laser and bonding materials reduce enamel demineralization around orthodontic brackets. Lasers Med Sci 28:111–118.  https://doi.org/10.1007/s10103-012-1076-5 CrossRefPubMedGoogle Scholar
  45. 45.
    Mathew A, Reddy NV, Sugumaran DK, Peter J, Shameer M, Dauravu LM (2013) Acquired acid resistance of human enamel treated with laser (Er:YAG laser and Co2 laser) and acidulated phosphate fluoride treatment: an in vitro atomic emission spectrometry analysis. Contemp Clin Dent 4:170–175.  https://doi.org/10.4103/0976-237x.114864 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chan KH, Tom H, Fried D (2014) Monitoring the inhibition of erosion by a CO2 laser with OCT. Proc SPIE Int Soc Opt Eng 8929:89290f.  https://doi.org/10.1117/12.2045679 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bahrololoomi Z, Fotuhi Ardakani F, Sorouri M (2015) In vitro comparison of the effects of diode laser and CO2 laser on topical fluoride uptake in primary teeth. J Dent (Tehran) 12:585–591Google Scholar
  48. 48.
    Kim JW, Chan KH, Fried D (2016) Evaluation of enamel surface modification using PS-OCT after laser treatment to increase resistance to demineralization. Proc SPIE Int Soc Opt Eng 9692.  https://doi.org/10.1117/12.2218662
  49. 49.
    Noureldin A, Quintanilla I, Kontogiorgos E, Jones D (2016) Enamel-caries prevention using two applications of fluoride-laser sequence. Tex Dent J 133:184–189PubMedGoogle Scholar
  50. 50.
    Mirhashemi AH, Hakimi S, Ahmad Akhoundi MS, Chiniforush N (2016) Prevention of enamel adjacent to bracket demineralization following carbon dioxide laser radiation and titanium tetra fluoride solution treatment: an in vitro study. J Lasers Med Sci 7:192–196.  https://doi.org/10.15171/jlms.2016.33 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Paulos RS, Seino PY, Fukushima KA, Marques MM, de Almeida FCS, Ramalho KM, de Freitas PM, Brugnera AJ, Moreira MS (2017) Effect of Nd:YAG and CO2 laser irradiation on prevention of enamel demineralization in orthodontics: in vitro study. Photomed Laser Surg 35:282–286.  https://doi.org/10.1089/pho.2016.4235 CrossRefPubMedGoogle Scholar
  52. 52.
    Lee R, Chan KH, Jew J, Simon JC, Fried D (2017) Synergistic effect of fluoride and laser irradiation for the inhibition of the demineralization of dental enamel. Proc SPIE Int Soc Opt Eng 10044.  https://doi.org/10.1117/12.2256739
  53. 53.
    Chan KH, Chan AC, Darling CL, Fried D (2013) Methods for monitoring erosion using optical coherence tomography. Proc SPIE Int Soc Opt Eng 8566:856606.  https://doi.org/10.1117/12.2011013 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Esteves-Oliveira M, Yu H, de Paula EC, Meister J, Lampert F, Attin T, Wiegand A (2012) Screening of CO(2) laser (10.6 mum) parameters for prevention of enamel erosion. Photomed Laser Surg 30:331–338.  https://doi.org/10.1089/pho.2011.3175 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kim JW, Lee R, Chan KH, Jew JM, Fried D (2017) Influence of a pulsed CO2 laser operating at 9.4 mum on the surface morphology, reflectivity, and acid resistance of dental enamel below the threshold for melting. J Biomed Opt 22:28001.  https://doi.org/10.1117/1.jbo.22.2.028001 CrossRefPubMedGoogle Scholar
  56. 56.
    Esteves-Oliveira M, Wollgarten S, Liebegall S, Jansen P, Bilandzic M, Meyer-Lueckel H, Fischer H, Stollenwerk J, Poprawe R (2017) A new laser-processing strategy for improving enamel erosion resistance. J Dent Res 96:1168–1175.  https://doi.org/10.1177/0022034517718532 CrossRefPubMedGoogle Scholar
  57. 57.
    Bilandzic MD, Wollgarten S, Stollenwerk J, Poprawe R, Esteves-Oliveira M, Fischer H (2017) Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection. Dent Mater 33:995–1003.  https://doi.org/10.1016/j.dental.2017.06.008 CrossRefPubMedGoogle Scholar
  58. 58.
    Rechmann P, Rechmann BM, Groves WH Jr, Le CQ, Rapozo-Hilo ML, Kinsel R, Featherstone JD (2016) Caries inhibition with a CO2 9.3 mum laser: an in vitro study. Lasers Surg Med 48:546–554.  https://doi.org/10.1002/lsm.22497 CrossRefPubMedGoogle Scholar
  59. 59.
    Khamverdi Z, Kordestani M, Panahandeh N, Naderi F, Kasraei S (2018) Influence of CO2 laser irradiation and CPP-ACP paste application on demineralized enamel microhardness. Journal of Lasers in Medical Sciences 9:144–148.  https://doi.org/10.15171/jlms.2018.27 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rajab MS (2013) Effects of irradiation of continuous wave carbon dioxide laser on caries resistance of deciduous teeth. Tikrit Journal for Dental Sciences 2:101–105Google Scholar
  61. 61.
    Oliveira MRC, Oliveira PHC, Oliveira LHC, Sfalcin RA, Prates RA, Navarro RS, Cesar PF, Deana AM, Chavantes MC, Bussadori SK, Horliana A (2018) Influence of ultrapulsed CO2 laser, before application of different types of fluoride, on the increase of microhardness of enamel in vitro. Biomed Res Int.  https://doi.org/10.1155/2018/5852948
  62. 62.
    Nozari A, Rafiee A, Khalili SD, Fekrazad R (2018) A comparative evaluation of APF gel, CPP/ACP paste alone and in combination with carbon dioxide laser on human enamel resistance to acid solubility using atomic absorption spectrometry: an in-vitro study. Minerva Stomatol 67:68–73.  https://doi.org/10.23736/s0026-4970.17.04108-5 CrossRefPubMedGoogle Scholar
  63. 63.
    Mahmoudzadeh M, Rezaei-Soufi L, Farhadian N, Jamalian SF, Akbarzadeh M, Momeni M, Basamtabar M (2018) Effect of CO2 laser and fluoride varnish application on microhardness of enamel surface around orthodontic brackets. Journal of Lasers in Medical Sciences 9:43–49.  https://doi.org/10.15171/jlms.2018.10 CrossRefPubMedGoogle Scholar
  64. 64.
    Zancope BR, Rodrigues LP, Parisotto TM, Steiner-Oliveira C, Rodrigues LKA, Nobre-dos-Santos M (2016) CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study. Lasers Med Sci 31:539–547.  https://doi.org/10.1007/s10103-016-1900-4 CrossRefPubMedGoogle Scholar
  65. 65.
    Rezaei-Soufi L, Miresmaeili A, Vahdatinia F, Azar F, Hosseini SM (2016) Evaluation of CO2 laser irradiation effect on enamel microhardness after incipient caries creation. International Journal of Medical Research & Health Sciences 5:217–221Google Scholar
  66. 66.
    Vieira KA, Steiner-Oliveira C, Soares LES, Rodrigues LKA, Nobre-dos-Santos M (2015) In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications. Lasers Med Sci 30:901–907.  https://doi.org/10.1007/s10103-013-1493-0 CrossRefPubMedGoogle Scholar
  67. 67.
    Ramos-Oliveira TM, Ramos TM, Esteves-Oliveira M, Apel C, Fischer H, Eduardo CD, Steagall W, de Freitas PM (2014) Potential of CO2 lasers (10.6 mu m) associated with fluorides in inhibiting human enamel erosion. Brazilian Oral Research 28:379–384.  https://doi.org/10.1590/1807-3107BOR-2014.vol28.0057 CrossRefGoogle Scholar
  68. 68.
    Poosti M, Ahrari F, Moosavi H, Najjaran H (2014) The effect of fractional CO2 laser irradiation on remineralization of enamel white spot lesions. Lasers Med Sci 29:1349–1355.  https://doi.org/10.1007/s10103-013-1290-9 CrossRefPubMedGoogle Scholar
  69. 69.
    Ramalho KM, Eduardo CD, Heussen N, Rocha RG, Lampert F, Apel C, Esteves-Oliveira M (2013) Protective effect of CO2 laser (10.6 mu m) and fluoride on enamel erosion in vitro. Lasers Med Sci 28:71–78.  https://doi.org/10.1007/s10103-012-1071-x CrossRefPubMedGoogle Scholar
  70. 70.
    Jeng YR, Lin TT, Huang JS, Peng SR, Shieh DB (2013) Topical laser application enhances enamel fluoride uptake and tribological properties. J Dent Res 92:655–660.  https://doi.org/10.1177/0022034513488392 CrossRefPubMedGoogle Scholar
  71. 71.
    Esteves-Oliveira M, Apel C, Gutknecht N, Velloso WF, Cotrim MEB, Eduardo CP, Zezell DM (2008) Low-fluence CO2 laser irradiation decreases enamel solubility. Laser Phys 18:478–485.  https://doi.org/10.1134/s1054660x08040233 CrossRefGoogle Scholar
  72. 72.
    Chang NN, Jew J, Simon JC, Chan KH, Lee RC, Fried WA, Cho J, Darling CL, Fried D (2017) Influence of multi-wavelength laser irradiation of enamel and dentin surfaces on surface morphology and permeability. Proc SPIE Int Soc Opt Eng 10044.  https://doi.org/10.1117/12.2256734
  73. 73.
    Zamudio-Ortega CM, Contreras-Bulnes R, Scougall-Vilchis RJ, Morales-Luckie RA, Olea-Mejia OF, Rodriguez-Vilchis LE, Garcia-Fabila MM (2014) Morphological and chemical changes of deciduous enamel produced by Er:YAG laser, fluoride, and combined treatment. Photomed Laser Surg 32:252–259.  https://doi.org/10.1089/pho.2013.3622 CrossRefPubMedGoogle Scholar
  74. 74.
    Liu Y, Hsu CY, Teo CM, Teoh SH (2013) Subablative Er:YAG laser effect on enamel demineralization. Caries Res 47:63–68.  https://doi.org/10.1159/000343573 CrossRefPubMedGoogle Scholar
  75. 75.
    Li ZZ, Code JE, Van De Merwe WP (1992) Er:YAG laser ablation of enamel and dentin of human teeth: determination of ablation rates at various fluences and pulse repetition rates. Lasers Surg Med 12:625–630CrossRefPubMedGoogle Scholar
  76. 76.
    Fried D, Featherstone JD, Le CQ, Fan K (2006) Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser. Lasers Surg Med 38:837–845.  https://doi.org/10.1002/lsm.20385 CrossRefPubMedGoogle Scholar
  77. 77.
    Apel C, Meister J, Ioana RS, Franzen R, Hering P, Gutknecht N (2002) The ablation threshold of Er:YAG and Er:YSGG laser radiation in dental enamel. Lasers Med Sci 17:246–252.  https://doi.org/10.1007/s101030200036 CrossRefPubMedGoogle Scholar
  78. 78.
    Liu Y, Hsu CY, Teo CM, Teoh SH (2013) Potential mechanism for the laser-fluoride effect on enamel demineralization. J Dent Res 92:71–75.  https://doi.org/10.1177/0022034512466412 CrossRefPubMedGoogle Scholar
  79. 79.
    Bevilacqua FM, Zezell DM, Magnani R, da Ana PA, Eduardo Cde P (2008) Fluoride uptake and acid resistance of enamel irradiated with Er:YAG laser. Lasers Med Sci 23:141–147.  https://doi.org/10.1007/s10103-007-0466-6 CrossRefPubMedGoogle Scholar
  80. 80.
    Correa-Afonso AM, Ciconne-Nogueira JC, Pecora JD, Palma-Dibb RG (2010) Influence of the irradiation distance and the use of cooling to increase enamel-acid resistance with Er:YAG laser. J Dent 38:534–540.  https://doi.org/10.1016/j.jdent.2010.03.009 CrossRefPubMedGoogle Scholar
  81. 81.
    Ahrari F, Poosti M, Motahari P (2012) Enamel resistance to demineralization following Er:YAG laser etching for bonding orthodontic brackets. Dent Res J (Isfahan) 9:472–477Google Scholar
  82. 82.
    Colucci V, de Souza Gabriel AE, Scatolin RS, Serra MC, Corona SA (2015) Effect of Er:YAG laser on enamel demineralization around restorations. Lasers Med Sci 30:1175–1181.  https://doi.org/10.1007/s10103-014-1534-3 CrossRefPubMedGoogle Scholar
  83. 83.
    Fornaini C, Brulat N, Milia G, Rockl A, Rocca JP (2014) The use of sub-ablative Er:YAG laser irradiation in prevention of dental caries during orthodontic treatment. Laser Ther 23:173–181.  https://doi.org/10.5978/islsm.14-OR-13 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Shahabi S, Fekrazad R, Johari M, Chiniforoush N, Rezaei Y (2016) FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers. J Dent Res Dent Clin Dent Prospects 10:207–212.  https://doi.org/10.15171/joddd.2016.033 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Perito MA, Jorge AC, de Freitas PM, Cassoni A, Rodrigues JA (2009) Cavity preparation and influence of restorative materials on the prevention of secondary caries. Photomed Laser Surg 27:729–734.  https://doi.org/10.1089/pho.2008.2394 CrossRefPubMedGoogle Scholar
  86. 86.
    de Oliveira RM, de Souza VM, Esteves CM, de Oliveira Lima-Arsati YB, Cassoni A, Rodrigues JA, Brugnera A (2017) Er,Cr:YSGG laser energy delivery: pulse and power effects on enamel surface and erosive resistance. Photomed Laser Surg 35:639–646.  https://doi.org/10.1089/pho.2017.4347 CrossRefPubMedGoogle Scholar
  87. 87.
    Ceballos-Jimenez AY, Rodriguez-Vilchis LE, Contreras-Bulnes R, Alatorre JA, Scougall-Vilchis RJ, Velazquez-Enriquez U, Moyaho-Bernal MDA (2018) Chemical changes of enamel produced by sodium fluoride, hydroxyapatite, Er:YAG laser, and combined treatments. Journal of Spectroscopy.  https://doi.org/10.1155/2018/6750217
  88. 88.
    Allam GG, Aziz AFA (2018) Comparing topical fluoride application, laser irradiation and their combined effect on remineralisation of enamel. Future Dental Journal 4:318–323CrossRefGoogle Scholar
  89. 89.
    Jahanimoghadam F, Poureslami H, Shamsaddin H, Horri A, Khazaeli P, Mahvic AH (2016) Effect of ER: Yag laser on sodium fluoride varnish uptake by primary tooth enamel: an in-vitro study. Fluoride 49:538Google Scholar
  90. 90.
    dos Reis DJ, Faraoni-Romano JJ, Azevedo DT, Wang L, Bataglion C, Palma-Dibb RG (2015) Effect of pretreatment with an Er: YAG laser and fluoride on the prevention of dental enamel erosion. Lasers Med Sci 30:857–862CrossRefGoogle Scholar
  91. 91.
    Ceballos-Jimenez AY, Rodriguez-Vilchis LE, Contreras-Bulnes R, Alatorre JAA, Velazquez-Enriquez U, Garcia-Fabila MM (2018) Acid resistance of dental enamel treated with remineralizing agents, Er:YAG laser and combined treatments. Dental and Medical Problems 55:255–259.  https://doi.org/10.17219/dmp/93960 CrossRefPubMedGoogle Scholar
  92. 92.
    Behroozibakhsh M, Shahabi S, Ghavami-Lahiji M, Sadeghian S, Nazari NSF (2018) Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er: YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness. Laser Phys 28.  https://doi.org/10.1088/1555-6611/aab2d6
  93. 93.
    Ulkur F, Ekci ES, Nalbantgil D, Sandalli N (2014) In vitro effects of two topical varnish materials and Er:YAG laser irradiation on enamel demineralization around orthodontic brackets. Sci World J.  https://doi.org/10.1155/2014/490503
  94. 94.
    Haznedaroglu E, Sozkes S, Mentes AR (2014) Microhardness evaluation of enamel adjacent to an improved GIC sealant after different enamel pre-treatment procedures. Eur J Paediatr Dent 15:397–400PubMedGoogle Scholar
  95. 95.
    Diaz-Monroy JM, Contreras-Bulnes R, Olea-Mejia OF, Rodriguez-Vilchis LE, Sanchez-Flores I (2014) Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Microsc Res Tech 77:410–414.  https://doi.org/10.1002/jemt.22360 CrossRefGoogle Scholar
  96. 96.
    Altinok B, Tanboga I, Peker S, Eren F, Bakkal M, Peker F (2011) The effect of laser-activated acidulated phosphate fluoride on enamel submitted to erosive solution only: an in vitro preliminary evaluation. Eur J Paediatr Dent 12:13–16PubMedGoogle Scholar
  97. 97.
    Rodriguez-Vilchis LE, Contreras-Bulnes R, Sanchez-Flores I, Samano EC (2010) Acid resistance and structural changes of human dental enamel treated with Er:YAG laser. Photomed Laser Surg 28:207–211.  https://doi.org/10.1089/pho.2008.2454 CrossRefPubMedGoogle Scholar
  98. 98.
    Baglar S (2018) Sub-ablative Er,Cr:YSGG laser irradiation under all-ceramic restorations: effects on demineralization and shear bond strength. Lasers Med Sci 33:41–49.  https://doi.org/10.1007/s10103-017-2326-3 CrossRefPubMedGoogle Scholar
  99. 99.
    de Freitas PM, Rapozo-Hilo M, Eduardo Cde P, Featherstone JD (2010) In vitro evaluation of erbium, chromium:yttrium-scandium-gallium-garnet laser-treated enamel demineralization. Lasers Med Sci 25:165–170.  https://doi.org/10.1007/s10103-008-0597-4 CrossRefPubMedGoogle Scholar
  100. 100.
    de Freitas PM, Soares-Geraldo D, Biella-Silva AC, Silva AV, da Silveira BL, Eduardo Cde P (2008) Intrapupal temperature variation during Er,Cr: YSGG enamel irradiation on carries prevention. J Appl Oral Sci 16:95–99CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Ana PA, Tabchoury CP, Cury JA, Zezell DM (2012) Effect of Er,Cr:YSGG laser and professional fluoride application on enamel demineralization and on fluoride retention. Caries Res 46:441–451.  https://doi.org/10.1159/000333603 CrossRefPubMedGoogle Scholar
  102. 102.
    Zamataro CB, Ana PA, Benetti C, Zezell DM (2013) Influence of Er,Cr:YSGG laser on CaF(2) -like products formation because of professional acidulated fluoride or to domestic dentifrice application. Microsc Res Tech 76:704–713.  https://doi.org/10.1002/jemt.22221 CrossRefPubMedGoogle Scholar
  103. 103.
    Geraldo-Martins VR, Lepri CP, Palma-Dibb RG (2013) Influence of Er,Cr:YSGG laser irradiation on enamel caries prevention. Lasers Med Sci 28:33–39.  https://doi.org/10.1007/s10103-012-1056-9 CrossRefPubMedGoogle Scholar
  104. 104.
    Zamataro CB, Ana PA, Benetti C, Zezell DM (2013) Influence of Er,Cr:YSGG Laser on CaF2-like products formation because of professional acidulated fluoride or to domestic dentifrice application. Microsc Res Tech 76:704–713.  https://doi.org/10.1002/jemt.22221 CrossRefPubMedGoogle Scholar
  105. 105.
    Kumar P, Goswami M, Dhillon JK, Rehman F, Thakkar D, Bharti K (2016) Comparative evaluation of microhardness and morphology of permanent tooth enamel surface after laser irradiation and fluoride treatment - an in vitro study. Laser Ther 25:201–208.  https://doi.org/10.5978/islsm.16-OR-16 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Jorge AC, Cassoni A, de Freitas PM, Reis AF, Brugnera Junior A, Rodrigues JA (2015) Influence of cavity preparation with Er,Cr:YSGG laser and restorative materials on in situ secondary caries development. Photomed Laser Surg 33:98–103.  https://doi.org/10.1089/pho.2014.3815 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Molaasadollah F, Asnaashari M, Abbas FM, Jafary M (2017) In vitro comparison of fluoride gel alone and in combination with Er,Cr:YSGG laser on reducing white spot lesions in primary teeth. Journal of Lasers in Medical Sciences 8:160–165.  https://doi.org/10.15171/jlms.2017.29 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Subramaniam P, Pandey A (2014) Effect of erbium, chromium: yttrium, scandium, gallium, garnet laser and casein phosphopeptide-amorphous calcium phosphate on surface micro-hardness of primary tooth enamel. European journal of dentistry 8:402CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Santos DM Jr, Nogueira RD, Lepri CP, Gonçalves LS, Palma-Dibb RG, Geraldo-Martins VR (2014) In vitro assessment of the acid resistance of demineralized enamel irradiated with Er, Cr: YSGG and Nd: YAG lasers. Pediatr Dent 36:137E–142EGoogle Scholar
  110. 110.
    Zezell D, Ana P, Benetti C, Goulart V, Bachmann L, Tabchoury C, Cury J (2010) Compositional and crystallographic changes on enamel when irradiated by Nd: YAG or Er, Cr: YSGG lasers and its resistance to demineralization when associated with fluoride. In: Lasers in Dentistry XVI. International Society for Optics and Photonics, p 75490GGoogle Scholar
  111. 111.
    Hasan NA, Gasgoos SS (2014) Effect of Er, Cr: YSGG laser output power on enamel caries prevention: an in vitro study. International Journal of Enhanced Research in Science Technology & Engineering 3:238–243.Google Scholar
  112. 112.
    Zezell DM, Benetti C, Veloso MN, Castro PAA, Ana PA (2015) FTIR spectroscopy revealing the effects of laser and ionizing radiation on biological hard tissues. J Braz Chem Soc 26:2571–2582.  https://doi.org/10.5935/0103-5053.20150246 CrossRefGoogle Scholar
  113. 113.
    Fekrazad R, Ebrahimpour L (2014) Evaluation of acquired acid resistance of enamel surrounding orthodontic brackets irradiated by laser and fluoride application. Lasers Med Sci 29:1793–1798.  https://doi.org/10.1007/s10103-013-1328-z CrossRefPubMedGoogle Scholar
  114. 114.
    Ana PA, Kauffmann CMF, Bachmann L, Soares LES, Martin AA, Gomes ASL, Zezell DM (2014) FT-Raman spectroscopic analysis of Nd:YAG and Er, Cr:YSGG laser irradiated enamel for preventive purposes. Laser Phys 24.  https://doi.org/10.1088/1054-660x/24/3/035603
  115. 115.
    Moslemi M, Fekrazad R, Tadayon N, Ghorbani M, Torabzadeh H, Shadkar MM (2009) Effects of Er,Cr:YSGG laser irradiation and fluoride treatment on acid resistance of the enamel. Pediatr Dent 31:409–413PubMedGoogle Scholar
  116. 116.
    Belikov A, Shatilova K, Skrypnik A (2012) Influence of submillisecond Er-laser pulses on mechanical properties of hard tooth tissues. ALT Proceedings 1Google Scholar
  117. 117.
    Belikov AV, Skrypnik AV, Shatilova KV (2013) Modification of the mechanical and chemical properties of dental enamel using Er laser radiation with sub-ablative energy density. Photonics & Lasers in Medicine 2:199–207CrossRefGoogle Scholar
  118. 118.
    Azevedo DT, Faraoni-Romano JJ, Derceli Jdos R, Palma-Dibb RG (2012) Effect of Nd:YAG laser combined with fluoride on the prevention of primary tooth enamel demineralization. Braz Dent J 23:104–109CrossRefPubMedGoogle Scholar
  119. 119.
    Bedini R, Manzon L, Fratto G, Pecci R (2010) Microhardness and morphological changes induced by Nd:Yag laser on dental enamel: an in vitro study. Ann Ist Super Sanita 46:168–172.  https://doi.org/10.4415/ann_10_02_10 CrossRefPubMedGoogle Scholar
  120. 120.
    Tavares JG, Eduardo Cde P, Burnett LH Jr, Boff TR, de Freitas PM (2012) Argon and Nd:YAG lasers for caries prevention in enamel. Photomed Laser Surg 30:433–437.  https://doi.org/10.1089/pho.2011.3104 CrossRefPubMedGoogle Scholar
  121. 121.
    Correa-Afonso AM, Bachmann L, de Almeida CG, Dibb RG, Borsatto MC (2015) Loss of structural water and carbonate of Nd:YAG laser-irradiated human enamel. Lasers Med Sci 30:1183–1187.  https://doi.org/10.1007/s10103-014-1532-5 CrossRefPubMedGoogle Scholar
  122. 122.
    Raucci-Neto W, de Castro-Raucci LM, Lepri CP, Faraoni-Romano JJ, Gomes da Silva JM, Palma-Dibb RG (2015) Nd:YAG laser in occlusal caries prevention of primary teeth: a randomized clinical trial. Lasers Med Sci 30:761–768.  https://doi.org/10.1007/s10103-013-1417-z CrossRefPubMedGoogle Scholar
  123. 123.
    Wen X, Zhang L, Liu R, Deng M, Wang Y, Liu L, Nie X (2014) Effects of pulsed Nd:YAG laser on tensile bond strength and caries resistance of human enamel. Oper Dent 39:273–282.  https://doi.org/10.2341/12-416-l CrossRefPubMedGoogle Scholar
  124. 124.
    Nathanael AJ, Oyane A, Nakamura M, Mahanti M, Koga K, Shitomi K, Miyaji H (2018) Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization. Acta Biomater 79:148–157.  https://doi.org/10.1016/j.actbio.2018.08.025 CrossRefGoogle Scholar
  125. 125.
    Afsheen S, Tahir MB, Iqbal T, Firdous S, Rehman J-U, Khan HNUH, Abrar M, Naeem M, Rafique MS (2018) Morphological, structural and hardness changes of human dental enamel irradiated with a Nd: YAG laser. Laser Phys 28:126004CrossRefGoogle Scholar
  126. 126.
    Al-Hasnawi KI, Al-Obaidi WA (2014) Effect of Nd-YAG laser-irradiation on fluoride uptake by tooth enamel surface (in vitro). Journal of baghdad college of dentistry 26:154–158CrossRefGoogle Scholar
  127. 127.
    Magalhaes AC, Romanelli AC, Rios D, Comar LP, Navarro RS, Grizzo LT, Aranha ACC, Buzalaf MAR (2011) Effect of a single application of TiF4 and NaF varnishes and solutions combined with Nd: YAG laser irradiation on enamel erosion in vitro. Photomed Laser Surg 29:537–544CrossRefPubMedGoogle Scholar
  128. 128.
    Zezell DM, Ana PA, Benetti C, Goulart VP, Bachmann L, Tabchoury CPM, Cury JA Compositional and crystallographic changes on enamel when irradiated by Nd:YAG or Er,Cr:YSGG lasers and its resistance to demineralization when associated with fluoride. In 2010. pp 75490G-775412Google Scholar
  129. 129.
    Sulaiman AR, Sultan AAJ, Bakr DK Microhardness of enamel surface irradiated with Nd: Yag laser. Laser 3:8Google Scholar
  130. 130.
    Chand BR, Kulkarni S, Mishra P (2016) Inhibition of enamel demineralisation using “Nd-YAG and diode laser assisted fluoride therapy”. Eur Arch Paediatr Dent 17:59–64.  https://doi.org/10.1007/s40368-015-0206-8 CrossRefPubMedGoogle Scholar
  131. 131.
    Joao-Souza SH, Bezerra SJC, Borges AB, Aranha AC, Scaramucci T (2015) Effect of sodium fluoride and stannous chloride associated with Nd:YAG laser irradiation on the progression of enamel erosion. Lasers Med Sci 30:2227–2232.  https://doi.org/10.1007/s10103-015-1791-9 CrossRefPubMedGoogle Scholar
  132. 132.
    Gao S, Huang S, Qian L, Yu H (2010) Nanoscratch resistance of human tooth enamel treated by Nd:YAG laser irradiation. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology 224:529–537.  https://doi.org/10.1243/13506501jet668 CrossRefGoogle Scholar
  133. 133.
    Rios D, Magalhaes AC, Machado M, da Silva SMB, Lizarelli RDZ, Bagnato VS, Buzalaf AR (2009) In vitro evaluation of enamel erosion after Nd:YAG laser irradiation and fluoride application. Photomed Laser Surg 27:743–747.  https://doi.org/10.1089/pho.2008.2384 CrossRefPubMedGoogle Scholar
  134. 134.
    Boari HGD, Ana PA, Eduardo CP, Powell GL, Zezell DM (2009) Absorption and thermal study of dental enamel when irradiated with Nd:YAG laser with the aim of caries prevention. Laser Phys 19:1463–1469.  https://doi.org/10.1134/s1054660x09070160 CrossRefGoogle Scholar
  135. 135.
    Bahrololoomi Z, Lotfian M (2015) Effect of diode laser irradiation combined with topical fluoride on enamel microhardness of primary teeth. J Dent (Tehran) 12:85–89Google Scholar
  136. 136.
    de Sant’anna GR, dos Santos EA, Soares LE, do Espirito Santo AM, Martin AA, Duarte DA, Pacheco-Soares C, Brugnera A Jr (2009) Dental enamel irradiated with infrared diode laser and photoabsorbing cream: part 1 -- FT-Raman study. Photomed Laser Surg 27:499–507.  https://doi.org/10.1089/pho.2008.2331 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    de Sant’Anna GR, dos Santos EA, Soares LE, do Espirito Santo AM, Martin AA, Duarte DA, Pacheco-Soares C, Brugnera A Jr (2009) Dental enamel irradiated with infrared diode laser and photo-absorbing cream: part 2--EDX study. Photomed Laser Surg 27:771–782.  https://doi.org/10.1089/pho.2008.2401 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lacerda AS, Hanashiro FS, de Sant’Anna GR, Steagall Junior W, Barbosa PS, de Souza-Zaroni WC (2014) Effects of near infrared laser radiation associated with photoabsorbing cream in preventing white spot lesions around orthodontic brackets: an in vitro study. Photomed Laser Surg 32:686–693.  https://doi.org/10.1089/pho.2014.3747 CrossRefPubMedGoogle Scholar
  139. 139.
    Barbosa PD, da Ana PA, Poiate I, Zezell DM, Anna GRD (2013) Dental enamel irradiated with a low-intensity infrared laser and photoabsorbing cream: a study of microhardness, surface, and pulp temperature. Photomed Laser Surg 31:439–446.  https://doi.org/10.1089/pho.2013.3485 CrossRefGoogle Scholar
  140. 140.
    Das UM, Prashanth ST (2009) A comparative study to evaluate the effect of fluoride releasing sealant cured by visible light, argon lasers, and light emitting diode curing units: an in vitro study. J Indian Soc Pedod Prev Dent 27:139–144.  https://doi.org/10.4103/0970-4388.57093 CrossRefPubMedGoogle Scholar
  141. 141.
    Popoff JMS, Rodrigues JA, Aras WMDF, Cassoni A (2014) Influence of photoactivation source on restorative materials and enamel demineralization. Photomed Laser Surg 32:274–280.  https://doi.org/10.1089/pho.2013.3677 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Ferla JdO, Rodrigues JA, Arrais CAG, Aranha ACC, Cassoni A (2013) Influence of photo-activation source on enamel demineralization around restorative materials. Brazilian Oral Research 27:286–292.  https://doi.org/10.1590/S1806-83242013005000015
  143. 143.
    Anderson JR, Ellis RW, Blankenau RJ, Beiraghi SM, Westerman GH (2000) Caries resistance in enamel by laser irradiation and topical fluoride treatment. J Clin Laser Med Surg 18:33–36.  https://doi.org/10.1089/clm.2000.18.33 CrossRefPubMedGoogle Scholar
  144. 144.
    Westerman GH, Hicks MJ, Flaitz CM, Ellis RW, Powell GL (2004) Argon laser irradiation and fluoride treatment effects on caries-like enamel lesion formation in primary teeth: an in vitro study. Am J Dent 17:241–244PubMedGoogle Scholar
  145. 145.
    Powell GL, Higuchi WI, Fox JL, Yu D, Blankenau RJ (1992) Argon laser effect on demineralization of human enamel. Proc SPIE 1643:1643–1646.  https://doi.org/10.1117/12.137368
  146. 146.
    Westerman GH, Hicks MJ, Flaitz CM, Powell GL (2006) In vitro caries formation in primary tooth enamel: role of argon laser irradiation and remineralizing solution treatment. J Am Dent Assoc 137:638–644CrossRefPubMedGoogle Scholar
  147. 147.
    Vlacic J, Meyers IA, Kim J, Walsh LJ (2007) Laser-activated fluoride treatment of enamel against an artificial caries challenge: comparison of five wavelengths. Aust Dent J 52:101–105CrossRefPubMedGoogle Scholar
  148. 148.
    Ten Cate JM, Duijsters PP (1982) Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 16:201–210CrossRefPubMedGoogle Scholar
  149. 149.
    Featherstone J (1986) Enhancement of remineralization in vitro and in vivo. In: Factors relating to demineralization and remineralization of the teeth. oxford university press, OxfordGoogle Scholar
  150. 150.
    Argenta RM, Tabchoury CP, Cury JA (2003) A modified pH-cycling model to evaluate fluoride effect on enamel demineralization. Pesqui Odontol Bras 17:241–246CrossRefPubMedGoogle Scholar
  151. 151.
    Vieira AE, Delbem AC, Sassaki KT, Rodrigues E, Cury JA, Cunha RF (2005) Fluoride dose response in pH-cycling models using bovine enamel. Caries Res 39:514–520.  https://doi.org/10.1159/000088189 CrossRefPubMedGoogle Scholar
  152. 152.
    Geraldo-Martins VR, Lepri CP, Faraoni-Romano JJ, Palma-Dibb RG (2014) The combined use of Er,Cr:YSGG laser and fluoride to prevent root dentin demineralization. J Appl Oral Sci 22:459–464CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Periodontology, Operative and Preventive Dentistry, Dental FacultyUniversity of BonnBonnGermany
  2. 2.Center of Applied Medical Laser Research and Biomedical Optics (AMLaReBO)University of BonnBonnGermany
  3. 3.Department of Biomedical Applications, Institute of Laser for Postgraduate StudiesUniversity of BaghdadBaghdadIraq

Personalised recommendations