Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Continuous cooling system in conjunction with laser surgery for ear reshaping

  • 47 Accesses


When the cartilage on the prominent ears is reshaped, the arising stress returns the tissue to its initial configuration. Laser irradiation of areas of maximal stress leads to stress relaxation and results in a stable configuration. Sixty auricles were harvested from 30 New Zealand white rabbits and cut into a rectangle measuring 50 mm by 25 mm with an average thickness of approximately 1.3 mm. Bilateral skin was included for ex vivo studies. Continuous cryogen spray cooling (CSC) with laser energy was delivered to the exposed cartilage for reshaping. In clinical applications, from January 2006 to December 2016, a total of 50 patients with 100 bat ears who underwent CO2 laser reshaping (otoplasty) were assessed. A continuous cooling system (4 °C) in conjunction with a CO2 laser was applied to make a retroauricular-approached incision and reshape the ear cartilage. The well cartilage bending correlated with the different parameters demonstrated in the continuous CSC protected group. All 100 (100%) of the subjects experienced early complications (≤ 1 month) related to laser exposure with swelling, while 5 (5%) experienced ecchymosis, 2 (2%) minimal hematoma, 2 (2%) scarring, 1 (1%) minor infection, 1 (1%) under correction, 1 (1%) overcorrection, and 1 (1%) relapse. These problems were corrected and/or had resolved after 3 months. All patients achieved good to excellent results in our final outcome assessment (> 6 months). Laser reshaping has a potential use in certain surgical procedures involving the cartilage. The appropriate conditions for laser ear reshaping clearly depend on the laser wavelength used, energy controlling, and tissue optical properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Chang CJ, Sally Cheng MH, Lynn LC, Wong BJF, Ting K (2008) Minimizing superficial thermal injury using bilateral cryogen spray cooling during laser reshaping of composite cartilage grafts. Lasers Surg Med 40:477–482

  2. 2.

    Sobol E, Sviridov A, Omel'chenko A, Bagratashvili V, Kitai M, Harding SE, Jones N, Jumel K, Mertig M, Pompe W, Ovchinnikov Y, Shekhter A, Svistushkin V (2000) Laser reshaping of cartilage. Biotechnol Genet Eng Rev 17:553–578

  3. 3.

    Stark H (1991) Otoplasty using the CO2 laser. Laryngorhinootologie 70:652

  4. 4.

    Wong BJ, Milner TE, Harrington A, Ro J, Dao X, Sobol EN, Nelson JS (1999) Feedback controlled laser mediated cartilage reshaping. Arch Facial Plast Surg 1:282–287

  5. 5.

    Wang Z, Pankratov MM, Perrault DF, Pankratov MM, Shapshay SM (1995) Laser-assisted cartilage reshaping: in vitro and in vivo animal studies. Proc SPIE 2395:296–302

  6. 6.

    Velegrakis GA, Papadakis CE, Nikolidakis AA, Prokopakis EP, Volitakis ME, Naoumidi I, Helidonis ES (2000) In vitro ear cartilage shaping with carbon dioxide laser: an experimental study. Ann Otol Rhinol Laryngol 109:1162–1166

  7. 7.

    Helidonis E, Volitakis M, Naumidi I, Velegrakis G, Bizakis J, Christodoulou P (1994) The histology of laser thermo-chondro-plasty. Am J Otolaryngol 15:423–428

  8. 8.

    Chang CJ, Tsang KL, Chiu LL, Wong BJF (2004) Reduction of superficial thermal injury using cryogen spray cooling in conjunction with Nd: YAG laser for cartilage reshaping of composite cartilage flaps: preliminary investigation. Formos J Surg 37:8–15

  9. 9.

    Gilchrest BA, Rosen S, Noe JM (1982) Chilling port wine stains improves the response to argon laser therapy. Plast Reconstr Surg 69:278–283

  10. 10.

    Dréno B, Patrice T, Litoux P, Barrière H (1985) The benefit of chilling in argon laser treatment of port wine stains. Plast Reconstr Surg 75:42–45

  11. 11.

    Chess C, Chess Q (1993) Cool laser optics treatment of large telangiectasia of the lower extremities. J Dermatol Surg Oncol 19:74–80

  12. 12.

    Chang CJ, Ma SF, Tzeng YF, Wei FC (2002) Dynamic cooling for laser photocoagulation: in vivo & ex vivo studies. J Med Biol Eng 22:25–32

  13. 13.

    Chang CJ, Yu DY, Chen HC, Chang SY, Hsiao YC, Ting K, Lin WS, Cheng SF, Chen KT, Hou KH (2015) Real-time photothermal imaging and response in pulsed dye laser treatment for port wine stain patients. Biom J 38:342–349

  14. 14.

    Nelson JS, Milner TE, Anvari B, Tanenbaum BS, Kimel S, Svaasand LO, Jacques SL (1995) Dynamic epidermal cooling during pulsed laser treatment of port wine stain-a new methodology with preliminary clinical evaluation. Arch Dermatol 131:695–700

  15. 15.

    Chang CJ, Nelson JS (1999) Cryogen spray cooling and higher fluence pulsed dye laser treatment improve port wine stain clearance while minimizing epidermal damage. J Dermatol Surg 25:767–772

  16. 16.

    Geronemus R, Lou W, Quintana A, Kauvar A (2000) High fluence modified pulsed dye laser photocoagulation with dynamic cooling for port wine stains in infancy. Arch Dermatol 136:942–943

  17. 17.

    Chang CJ, Kelly KM, van Gemert MJC, Nelson JS (2002) Comparing the effectiveness of 585-nm versus 595-nm wavelength pulsed dye laser treatment of port-wine stains in conjunction with cryogen spray cooling during. Lasers Surg Med 31:352–358

  18. 18.

    Chang CJ, Anvari B, Nelson JS (1998) Cryogen spray cooling for spatially selective photocoagulation of hemangiomas-a new methodology with preliminary clinical reports. Plast Reconstr Surg 102:459–463

  19. 19.

    Chang CJ, Kelly KM, Nelson JS (2001) Cryogen spray cooling and pulsed dye laser treatment of cutaneous hemangiomas. Ann Plast Surg 46:577–583

  20. 20.

    Huang PS, Chang CJ (2001) Cryogen spray cooling in conjunction with pulse dye laser treatment of port wine stains of the head and neck. Chang Gung Med J 24:469–475

  21. 21.

    Manzer LE (1990) The CFCs-ozone issue: progress on the development of alternative to CFCs. Science 249:31–36

  22. 22.

    Magaribuchi T, Ito Y, Kuriyama H (1973) Effects of rapid cooling on the mechanical and electrical activities of smooth muscles of guinea pig stomach and taenia coli. J Gen Physiol 61:323–341

  23. 23.

    Sun YS, Weng CI, Chen TC, Li WC (1996) Estimation of surface absorptivity and surface temperature in laser surface hardening process. Jpn J Appl Phys 35:3658–3664

  24. 24.

    Ting K, Chen KT, Cheng SF, Lin WS, Chang CJ (2008) Prediction of skin temperature distribution in cosmetic laser surgery. Jpn J Appl Phys 47:361–367

  25. 25.

    Liu J (2001) Uncertainty analysis for temperature prediction of biological bodies subject to randomly spatial heating. J Biomech 34:1637–1642

  26. 26.

    Alexander RR, Griffiths JM (1993) Basic biochemical methods, 2nd ed. Wiley-Liss, Inc., New York, p 181

  27. 27.

    Kaminski W (1990) Hyperbolic heat conduction equation for materials with a non-homogeneous inner structure. J Heat Transf 112:555–560

  28. 28.

    Diller KR, Hayes LJ (1991) Analysis of tissue injury by burning: comparison of in situ and skin flap models. Int J Heat Mass Transf 34:1393–1406

  29. 29.

    Lecarpentier GL, Motamedi M, Mcmath LP, Rastegar S, Welch AJ (1993) Continuous wave laser ablation of tissue: analysis of thermal and mechanical events. IEEE Trans Biomed Eng 40:188–200

  30. 30.

    Moritz AR, Henriques FC (1947) Studies of thermal injury II. Relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23:695–720

  31. 31.

    Stoll AM, Greene LC (1959) Relationship between pain and tissue damage due to thermal radiation. J Appl Physiol 14:373–382

  32. 32.

    Torvi DA, Dale JD (1994) A finite element model of skin subjected to a flash fire. J Biomech Eng 116:250–255

  33. 33.

    Mitra K, Kumar S, Vedavarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processes meat. ASME J Heat Transfer 117:568–573

  34. 34.

    Liu J, Ren Z, Wang C (1995) Interpretation of living tissue’s temperature oscillations by thermal wave theory. Chin Sci Bull 40:1493

  35. 35.

    Lu WQ, Liu J, Zeng Y (1998) Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method. Eng Anal Bound Elem 22:167–174

  36. 36.

    Nabil TM, Mona AA, Asma FE (2003) Effects of microwave heating on the thermal states of biological tissues. Afr J Biotechnol 2:453–459

  37. 37.

    Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247:431–433

Download references


Our research has been supported by the grants of the Chang Gung Memorial Hospital (CMRPG 3E0581, 3E0221, 3E1151). The authors would like to express their sincere gratitude to Dr. Lin Chu M.D. and Prof. Brian Wong, M.D., Ph.D., F.A.C.S., Beckman Laser Institute at the University of California at Irvine for providing his theoretical perspective and medical expertise to assist in the research.

Author information

Correspondence to Cheng-Jen Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsiao, Y., Ting, K., Su, Y. et al. Continuous cooling system in conjunction with laser surgery for ear reshaping. Lasers Med Sci 35, 387–393 (2020). https://doi.org/10.1007/s10103-019-02831-3

Download citation


  • Rabbit ear
  • Cryogen spray cooling
  • Laser reshaping
  • Thermal injury