Advertisement

Lasers in Medical Science

, Volume 34, Issue 7, pp 1283–1293 | Cite as

Polarization-resolved Stokes-Mueller imaging: a review of technology and applications

  • Spandana K. U.
  • K. K. Mahato
  • Nirmal MazumderEmail author
Review Article
  • 148 Downloads

Abstract

Polarization microscopy, a powerful optical tool to study anisotropic properties of biomolecules, provides better microstructural information of a sample as compared with conventional optical microscopic techniques. The measurement and analysis of polarization states of light can be performed using both Jones matrix as well as Stokes algebra. Further, the details of optical properties of specimen are characterized by Mueller matrix. However, the application of Jones calculus is limited to perfectly polarized light, but Stokes-Mueller polarimetry is emerging as a promising tool for tissue imaging due to its application irrespective of polarization state of the light. In this review article, we explain the development of Stokes-Mueller formalism in context of linear optics. Furthermore, application of Mueller matrix decomposition (MMD) method to derive sample properties is demonstrated in several bio-medical studies.

Keywords

Anisotropy Optics Microscopy Polarimetry Tissue Imaging 

Notes

Acknowledgements

We thank SERB-Department of Science and Technology (DST), Government of India for financial support. The authors thank Dr. K. Satyamoorthy, Director, School of Life Sciences, MAHE, for his encouragement and Manipal Academy of Higher Education, Manipal, for providing the infrastructure and facilities.

Funding information

This study was financially supported by SERB-DST, Government of India (Project Number—ECR/2016/001944).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Schoenenberger K, Colston BW, Maitland DJ, Da Silva LB, Everett MJ (1998) Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Appl Opt 37(25):6026–6036CrossRefGoogle Scholar
  2. 2.
    Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80CrossRefGoogle Scholar
  3. 3.
    Kliger DS, Lewis JW (2012) Polarized light in optics and spectroscopy. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Oldenbourg R, Mei G (1995) New polarized light microscope with precision universal compensator. J Microsc 180(2):140–147CrossRefGoogle Scholar
  5. 5.
    Tuchin VV (2016) Polarized light interaction with tissues. J Biomed Opt 21(7):071114CrossRefGoogle Scholar
  6. 6.
    Shindo Y, Oda Y (1992) Mueller matrix approach to fluorescence spectroscopy. Part I: Mueller matrix expressions for fluorescent samples and their application to problems of circularly polarized emission spectroscopy. Appl Spectrosc 46(8):1251–1259CrossRefGoogle Scholar
  7. 7.
    Inoué S (2008) Microtubule dynamics in cell division: exploring living cells with polarized light microscopy. Annu Rev Cell Dev Biol 24:1–28CrossRefGoogle Scholar
  8. 8.
    Novikova T, Pierangelo A, De Martino A, Benali A, Validire P (2012) Polarimetric imaging for cancer diagnosis and staging. Opt Photonics News 23(10):26–33CrossRefGoogle Scholar
  9. 9.
    Hecht E (2002) Optics, 4th International edn. Addison-Wesley, San Francisco 3:2Google Scholar
  10. 10.
    Brasselet S (2011) Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv Opt Photon 3(3):205CrossRefGoogle Scholar
  11. 11.
    Azzam R (1985) Arrangement of four photodetectors for measuring the state of polarization of light. Opt Lett 10(7):309–311CrossRefGoogle Scholar
  12. 12.
    Song H, Zhao Y, Qi X, Chui YT, Burns SA (2008) Stokes vector analysis of adaptive optics images of the retina. Opt Lett 33(2):137–139CrossRefGoogle Scholar
  13. 13.
    Mazumder N, Qiu J, Foreman MR, Romero CM, Török P, Kao F-J (2013) Stokes vector based polarization resolved second harmonic microscopy of starch granules. Biomed Opt Express 4(4):538–547CrossRefGoogle Scholar
  14. 14.
    Ghosh N, Wood MF, Vitkin IA (2008) Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J Biomed Opt 13(4):044036CrossRefGoogle Scholar
  15. 15.
    Sun M, He H, Zeng N, Du E, Guo Y, Peng C, He Y, Ma H (2014) Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters. Appl Opt 53(14):2949–2955CrossRefGoogle Scholar
  16. 16.
    Bueno J, Cookson C, Kisilak M, Campbell M (2009) Enhancement of confocal microscopy images using Mueller-matrix polarimetry. J Microsc 235(1):84–93CrossRefGoogle Scholar
  17. 17.
    Shi Y, McClain W, Harris R (1994) Generalized Stokes-Mueller formalism for two-photon absorption, frequency doubling, and hyper-Raman scattering. Phys Rev A 49(3):1999CrossRefGoogle Scholar
  18. 18.
    Da Costa V, Wei R, Lim R, Sun C-H, Brown JJ, Wong BJ-F (2008) Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy. Arch Facial Plast Surg 10(1):38–43CrossRefGoogle Scholar
  19. 19.
    Oldenbourg R, Török P (2000) Point-spread functions of a polarizing microscope equipped with high-numerical-aperture lenses. Appl Opt 39(34):6325–6331CrossRefGoogle Scholar
  20. 20.
    Lu S-Y, Chipman RA (1996) Interpretation of Mueller matrices based on polar decomposition. JOSA A 13(5):1106–1113CrossRefGoogle Scholar
  21. 21.
    Wood MF, Ghosh N, Wallenburg MA, Li S-H, Weisel RD, Wilson BC, Li R-K, Vitkin IA (2010) Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. J Biomed Opt 15(4):047009CrossRefGoogle Scholar
  22. 22.
    Ghassemi P, Lemaillet P, Ramella-Roman JC, Shupp JW, Venna SS, Boisvert ME, Flanagan K, Jordan MH, Germer TA (2012) Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis. J Biomed Opt 17(7):076014CrossRefGoogle Scholar
  23. 23.
    Adams DC, Hariri LP, Miller AJ, Wang Y, Cho JL, Villiger M, Holz JA, Szabari MV, Hamilos DL, Harris RS (2016) Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo. Sci Transl Med 8(359):359ra131–359ra131CrossRefGoogle Scholar
  24. 24.
    Qi J, He H, Ma H, Elson DS (2017) Extended polar decomposition method of Mueller matrices for turbid media in reflection geometry. Opt Lett 42(20):4048–4051CrossRefGoogle Scholar
  25. 25.
    Kumar MS, Simon R (1992) Characterization of Mueller matrices in polarization optics. Opt Commun 88(4–6):464–470CrossRefGoogle Scholar
  26. 26.
    Simon B, Simon S, Mukunda N, Gori F, Santarsiero M, Borghi R, Simon R (2010) A complete characterization of pre-Mueller and Mueller matrices in polarization optics. JOSA A 27(2):188–199CrossRefGoogle Scholar
  27. 27.
    Reddy SG, Prabhakar S, Chithrabhanu P, Singh R, Simon R (2016) Polarization state transformation using two quarter wave plates: application to Mueller polarimetry. Appl Opt 55(12):B14–B19CrossRefGoogle Scholar
  28. 28.
    Mohanty SK, Ghosh N, Majumder SK, Gupta PK (2001) Depolarization of autofluorescence from malignant and normal human breast tissues. Appl Opt 40(7):1147–1154CrossRefGoogle Scholar
  29. 29.
    Ellingsen PG, Aas LMS, Hagen VS, Kumar R, Lilledahl MB, Kildemo M (2014) Mueller matrix three-dimensional directional imaging of collagen fibers. J Biomed Opt 19(2):026002CrossRefGoogle Scholar
  30. 30.
    Ghosh N, Wood MF, Li S, Weisel RD, Wilson BC, Li RK, Vitkin IA (2009) Mueller matrix decomposition for polarized light assessment of biological tissues. J Biophotonics 2(3):145–156CrossRefGoogle Scholar
  31. 31.
    Qi J, Elson DS (2016) A high definition Mueller polarimetric endoscope for tissue characterisation. Sci Rep 6:25953CrossRefGoogle Scholar
  32. 32.
    Wang Y, He H, Chang J, He C, Liu S, Li M, Zeng N, Wu J, Ma H (2016) Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J Biomed Opt 21(7):071112CrossRefGoogle Scholar
  33. 33.
    Wood MF, Ghosh N, Moriyama EH, Wilson BC, Vitkin IA (2009) Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. J Biomed Opt 14(1):014029CrossRefGoogle Scholar
  34. 34.
    Dong Y, Qi J, He H, He C, Liu S, Wu J, Elson DS, Ma H (2017) Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed Opt Express 8(8):3643–3655CrossRefGoogle Scholar
  35. 35.
    Ellingsen PG, Lilledahl MB, Aas LMS, de Lange Davies C, Kildemo M (2011) Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy. J Biomed Opt 16(11):116002CrossRefGoogle Scholar
  36. 36.
    Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, De Martino A (2013) The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl Phys Lett 102(24):241103CrossRefGoogle Scholar
  37. 37.
    Antonelli M-R, Pierangelo A, Novikova T, Validire P, Benali A, Gayet B, De Martino A (2010) Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt Express 18(10):10200–10208CrossRefGoogle Scholar
  38. 38.
    Pierangelo A, Nazac A, Benali A, Validire P, Cohen H, Novikova T, Ibrahim BH, Manhas S, Fallet C, Antonelli M-R (2013) Polarimetric imaging of uterine cervix: a case study. Opt Express 21(12):14120–14130CrossRefGoogle Scholar
  39. 39.
    Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A, Soufan R, Genestie C, Haie-Meder C, Fernandez H, Moreau F (2017) In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci Rep 7(1):2471CrossRefGoogle Scholar
  40. 40.
    Wang W, Lim LG, Srivastava S, Bok-Yan So J, Shabbir A, Liu Q (2016) Investigation on the potential of Mueller matrix imaging for digital staining. J Biophotonics 9(4):364–375CrossRefGoogle Scholar
  41. 41.
    Pierangelo A, Benali A, Antonelli M-R, Novikova T, Validire P, Gayet B, De Martino A (2011) Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt Express 19(2):1582–1593CrossRefGoogle Scholar
  42. 42.
    Dong Y, He H, Sheng W, Wu J, Ma H (2017) A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry. Sci Rep 7Google Scholar
  43. 43.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917CrossRefGoogle Scholar
  44. 44.
    Bancelin S, Nazac A, Ibrahim BH, Dokládal P, Decencière E, Teig B, Haddad H, Fernandez H, Schanne-Klein M-C, De Martino A (2014) Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging. Opt Express 22(19):22561–22574CrossRefGoogle Scholar
  45. 45.
    Arifler D, Pavlova I, Gillenwater A, Richards-Kortum R (2007) Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophys J 92(9):3260–3274CrossRefGoogle Scholar
  46. 46.
    He H, He C, Chang J, Lv D, Wu J, Duan C, Zhou Q, Zeng N, He Y, Ma H (2017) Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging. J Biophotonics 10(5):664–673CrossRefGoogle Scholar
  47. 47.
    Chen D, Zeng N, Xie Q, He H, Tuchin VV, Ma H (2017) Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing. Biomed Opt Express 8(8):3559–3570CrossRefGoogle Scholar
  48. 48.
    Kunnen B, Macdonald C, Doronin A, Jacques S, Eccles M, Meglinski I (2015) Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J Biophotonics 8(4):317–323CrossRefGoogle Scholar
  49. 49.
    Aas LMS, Ellingsen PG, Kildemo M (2011) Near infra-red Mueller matrix imaging system and application to retardance imaging of strain. Thin Solid Films 519(9):2737–2741CrossRefGoogle Scholar
  50. 50.
    Golaraei A, Kontenis L, Cisek R, Tokarz D, Done SJ, Wilson BC, Barzda V (2016) Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. Biomed Opt Express 7(10):4054–4068CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biophysics, School of Life SciencesManipal Academy of Higher EducationManipalIndia

Personalised recommendations