Advertisement

Photobiomodulation can alter mRNA levels cell death-related

  • Pierre Augusto Victor da SilvaEmail author
  • Lúcia Mara Januário Dos Anjos
  • Thais Fraga Abduch
  • Rafael Pereira
  • Adenilson de Souza da Fonseca
  • Fávia de Paoli
Original Article
  • 22 Downloads

Abstract

Photobiomodulation (PBM) by low-level laser has demonstrated excellent results for inflammatory treatments, promoting repair of injured tissues. Knowledge regarding the molecular mechanisms involved in this process has been increasing, but its effect on cell death/survival-related gene expression after laser irradiation with different doses is not well understood. So, it is important to know these effects in order to guarantee the safety of therapeutic protocols based on PBM. This study aimed to investigate the mRNA levels of genes related to proteins involved in cell death/survival pathways of healthy tissues from talocrural joint of mice after PBM. Mice were divided into three groups: control, PBM at 3 J cm−2, and PBM at 30 J cm−2. Laser irradiation was performed on talocrural joint during four consecutive days. Morphological analyses, immunocytochemistry, FasL, Fas, Bax, Apaf1, Caspase9, Caspase3, Caspase6, Bcl2 mRNA levels, and DNA fragmentation were performed to verify cell death induction after laser irradiation. PBM can increase mRNA levels of almost genes pro-apoptotic. On the other hand, mRNA level of anti-apoptotic protein Bcl-2 gene was not significantly altered. Bcl-2/Bax ratio (indicator of protective molecular response) was decreased after PBM at 30 J cm−2, trending to DNA fragmentation. Results obtained in this study indicate that PBM by low-level infrared laser alters mRNA relative levels of genes involved in cell death pathways. However, these molecular alterations were not able to cause DNA fragmentation in cells in talocrural joint tissues, indicating that infrared laser was not enough to cause cell death.

Keywords

Photobiomodulation Apoptosis Bcl-2/Bax ratio Caspase DNA fragmentation 

Abbreviations

μm

Micrometers

AlGaAs

Gallium arsenide aluminum

AMPc

Adenosine monophosphate cyclic

APAF-1

“Apoptotic protease-activating factor 1” or apoptosis factor 1 activating protease

ATP

Adenosine triphosphate

BAK

Member of the pro-apoptotic Bcl-2 family

BAX

Member of the pro-apoptotic Bcl-2 family

Bcl-2

B cell lymphoma protein 2

BH3

Member of the pro-apoptotic Bcl-2 family

BID

Member of the pro-apoptotic Bcl-2 family

BAD

Member of the pro-apoptotic Bcl-2 family

Caspase

Cysteine-specific protease aspartyl

cDNA

Complementary deoxyribonucleic acid

DISC

Death-inducing signaling complex

DNA

Deoxyribonucleic acid

EROs

Reactive oxygen species

FADD

“Fas-associated death domain” or FAS-associated death domain

FAS or CD95 or APO-1

Pro-apoptosis membrane receptor or protein

FAS-L or CD95L

FAS-binding membrane protein

IL-1

Interleukin 1

IL-17

Interleukin 17

J/cm2

Joules per square centimeters

LASER

Light amplification by stimulated emission of radiation

mJ

Millijoules

MMP

Matrix metalloproteinases

mW

Milliwatt

nm

Nanometers

PBS

Saline phosphate-buffered solution

PCR

Polymerase chain reaction

RNA

Ribonucleic acid

RNS

Reactive nitrogen species

t-BID

Truncated BID

TdT

Terminal deoxynucleotidyl transferase

TGF-β

Transforming growth factor β

TNF

Tumor necrosis factor

TNFR1

TNF receptor

TUNEL POD

Peroxidase-labeled antibody used for the detection of apoptosis (programmed cell death) with the TUNEL reaction followed by microscopy

Notes

Funding

This study was supported by Conselho Nacional de Pesquisa e Desenvolvimento-CNPq (process number APQ 474405/2013–3) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais-FAPEMIG (process number APQ 02123/15).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Leal-Junior ECP, Vanin AA, Miranda EF et al (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30:925–939.  https://doi.org/10.1007/s10103-013-1465-4 CrossRefGoogle Scholar
  2. 2.
    Borges LS, Cerqueira MS, Dos Santos Rocha JA et al (2013) Light-emitting diode phototherapy improves muscle recovery after a damaging exercise. Lasers Med Sci 29:1139–1144.  https://doi.org/10.1007/s10103-013-1486-z Google Scholar
  3. 3.
    David R, De Souza RA, Xavier M et al (2010) Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats 558:553–558.  https://doi.org/10.1002/lsm.20896 Google Scholar
  4. 4.
    Baltzer AWA, Stosch D, Seidel F, Ostapczuk MS (2017) Low level laser therapy : A narrative literature review on the efficacy in the treatment of rheumatic orthopaedic conditions. Z Rheumatol 76(9):806–812Google Scholar
  5. 5.
    Ruaro JA, Fréz AR, Ruaro MB, Nicolau RA (2014) Low-level laser therapy to treat fibromyalgia. Lasers Med Sci 29(6):1815–1819Google Scholar
  6. 6.
    Kingsley JD, Demachak T, Mathis R (2014) Low-level laser therapy as a treatment for chronic pain. Front Physiol 5:1–3.  https://doi.org/10.3389/fphys.2014.00306 CrossRefGoogle Scholar
  7. 7.
    Djavid GE, Mehrdad R, Ghasemi M et al (2007) In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: a randomised trial. Aust J Physiother 53:155–160.  https://doi.org/10.1016/S0004-9514(07)70022-3 CrossRefGoogle Scholar
  8. 8.
    Glazov G, Yelland M, Emery J (2016) Low-level laser therapy for chronic non-specific low back pain: a meta-analysis of randomised controlled trials. Acupunct Med 34:328–341.  https://doi.org/10.1136/acupmed-2015-011036 CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Li Z-J, Wang Y, Zhang H-F et al (2016) Effectiveness of low-level laser on carpal tunnel syndrome: a meta-analysis of previously reported randomized trials. Medicine (Baltimore) 95:e4424.  https://doi.org/10.1097/MD.0000000000004424 CrossRefGoogle Scholar
  10. 10.
    Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099.  https://doi.org/10.1111/j.1751-1097.2008.00394.x CrossRefGoogle Scholar
  11. 11.
    Karu T (2014) Cellular and Molecular Mechanisms of Photobiomodulation (Low-Power Laser Therapy). IEEE J Sel Top Quantum Electron 20(2):143–148Google Scholar
  12. 12.
    Wu S, Xing D (2014) Intracellular signaling cascades following light irradiation. Laser Photon Rev 8:115–130.  https://doi.org/10.1002/lpor.201300015 CrossRefGoogle Scholar
  13. 13.
    Song S, Zhang Y, Fong C-C et al (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 120:849–857.  https://doi.org/10.1046/j.1523-1747.2003.12133.x CrossRefGoogle Scholar
  14. 14.
    Calles C, Schneider M, MacAluso F et al (2010) Infrared a radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J Invest Dermatol 130:1524–1536.  https://doi.org/10.1038/jid.2010.9 CrossRefGoogle Scholar
  15. 15.
    Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7:dose-response.0.  https://doi.org/10.2203/dose-response.09-027.Hamblin
  16. 16.
    Huang Y-Y, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy – an update. Dose-Response 9:dose-response.1.  https://doi.org/10.2203/dose-response.11-009.Hamblin
  17. 17.
    dos Anjos LMJ, da Fonseca A d S, Gameiro J, de Paoli F (2017) Apoptosis induced by low-level laser in polymorphonuclear cells of acute joint inflammation: comparative analysis of two energy densities Lasers Med Sci 32:975–983.  https://doi.org/10.1007/s10103-017-2196-8 Google Scholar
  18. 18.
    Sergio LPS, Campos VMA, Vicentini SC et al (2016) Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue. Lasers Med Sci 31:429–435.  https://doi.org/10.1007/s10103-016-1870-6 CrossRefGoogle Scholar
  19. 19.
    Sergio LPDS, Thomé AMC, Trajano LADSN et al (2018) Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochem Photobiol Sci 17:975–983.  https://doi.org/10.1039/c8pp00109j CrossRefGoogle Scholar
  20. 20.
    Huang L, Wu S, Xing D (2011) High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3β signaling pathway. J Cell Physiol 226:588–601.  https://doi.org/10.1002/jcp.22367 CrossRefGoogle Scholar
  21. 21.
    Wu S, Xing D, Gao X, Chen WR (2009) High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol 218:603–611.  https://doi.org/10.1002/jcp.21636 CrossRefGoogle Scholar
  22. 22.
    De Paoli F, Ramos Cerqueira L, Martins Ramos M et al (2014) DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser. Prog Biomed Opt Imaging - Proc SPIE 9321:1–12.  https://doi.org/10.1117/12.2075726 Google Scholar
  23. 23.
    Hassan M, Watari H, Abualmaaty A, et al (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845Google Scholar
  24. 24.
    Zaman S, Wang R, Gandhi V (2014) Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma 55:1980–1992.  https://doi.org/10.3109/10428194.2013.855307 CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19:448.  https://doi.org/10.3390/ijms19020448 CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nagata S (2018) Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol 36(1)489–517.  https://doi.org/10.1146/annurev-immunol-042617-053010
  27. 27.
    Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21:501–515.  https://doi.org/10.1016/j.str.2013.02.024 CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bialik S, Zalckvar E, Ber Y et al (2010) Systems biology analysis of programmed cell death. Trends Biochem Sci 35:556–564.  https://doi.org/10.1016/j.tibs.2010.04.008 CrossRefGoogle Scholar
  29. 29.
    Ashkenazi A (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 19:325–331.  https://doi.org/10.1016/j.cytogfr.2008.04.001 CrossRefGoogle Scholar
  30. 30.
    Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3 — new capabilities and interfaces. Nucleic Acids Res 40:1–12.  https://doi.org/10.1093/nar/gks596 CrossRefGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  32. 32.
    Carroll JD, Milward MR, Cooper PR et al (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30:465–475.  https://doi.org/10.1016/j.dental.2014.02.006 CrossRefGoogle Scholar
  33. 33.
    de Freitas LF, Hamblin MR (2016) Proposed mechanisms of Photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3).  https://doi.org/10.1109/JSTQE.2016.2561201
  34. 34.
    De Marchi T, Leal ECP, Bortoli C et al (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27:231–236.  https://doi.org/10.1007/s10103-011-0955-5 CrossRefGoogle Scholar
  35. 35.
    Dos Santos Maciel T, Muñoz ISS, Nicolau RA et al (2014) Phototherapy effect on the muscular activity of regular physical activity practitioners. Lasers Med Sci 29:1145–1152.  https://doi.org/10.1007/s10103-013-1481-4 CrossRefGoogle Scholar
  36. 36.
    Canuto KS, Sergio LPS, Guimarães OR et al (2015) Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells. Braz J Med Biol Res 48(10):939–944Google Scholar
  37. 37.
    Sun X, Wu S, Xing D (2010) The reactive oxygen species-Src-Stat3 pathway provokes negative feedback inhibition of apoptosis induced by high-fluence low-power laser irradiation. FEBS J 277:4789–4802.  https://doi.org/10.1111/j.1742-4658.2010.07884.x CrossRefGoogle Scholar
  38. 38.
    Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63.  https://doi.org/10.1038/nrm3722 CrossRefGoogle Scholar
  39. 39.
    Strasser A, Jost PJ, Nagata S (2009) Review the many roles of FAS receptor signaling in the immune system. Immunity 30:180–192.  https://doi.org/10.1016/j.immuni.2009.01.001 CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jost PJ, Grabow S, Gray D et al (2009) LETTERS XIAP discriminates between type I and type II. Nature 460:1035–1039.  https://doi.org/10.1038/nature08229 CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Krammer PH (2000) CD95's deadly mission in the immune system. Nature 407(6805):789–795Google Scholar
  42. 42.
    Yin X, Wang K, Gross A et al (1999) letters to nature Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:2–7CrossRefGoogle Scholar
  43. 43.
    Schinzel A, Kaufmann T, Borner C (2004) Bcl-2 family members: intracellular targeting, membrane-insertion, and changes in subcellular localization. Biochim Biophys Acta - Mol Cell Res 1644:95–105.  https://doi.org/10.1016/j.bbamcr.2003.09.006 CrossRefGoogle Scholar
  44. 44.
    Migliario M, Pittarella P, Fanuli M et al (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467.  https://doi.org/10.1007/s10103-014-1556-x CrossRefGoogle Scholar
  45. 45.
    Kushibiki T, Hirasawa T, Okawa S, Ishihara M (2013) Blue laser irradiation generates intracellular reactive oxygen species in various types of cells. Photomed Laser Surg 31:95–104.  https://doi.org/10.1089/pho.2012.3361 CrossRefGoogle Scholar
  46. 46.
    Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644(2-3):83–94.  https://doi.org/10.1016/j.bbamcr.2003.08.012
  47. 47.
    Grivicich I, Regner A, da Rocha AB (2007) Morte Celular por Apoptose. Rev Bras Cancrol 53:335–343.  https://doi.org/10.1590/S0102-311X2003000200031 Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Pierre Augusto Victor da Silva
    • 1
    Email author
  • Lúcia Mara Januário Dos Anjos
    • 2
  • Thais Fraga Abduch
    • 3
  • Rafael Pereira
    • 4
  • Adenilson de Souza da Fonseca
    • 5
  • Fávia de Paoli
    • 2
  1. 1.Departamento de FisioterapiaCentro Universitário Redentor (UniRedentor)Itaperuna / Rio de JaneiroBrazil
  2. 2.Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  3. 3.Departamento de Fisioterapia, Faculdade de Ciências Médicas e da Saúde (SUPREMA)Juiz de ForaBrazil
  4. 4.Departamento de Ciências BiológicasUniversidade Estadual do Sudoeste da Bahia (UESB)JequiéBrazil
  5. 5.Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations